

ODAM Framework Open Data for Access and Mining

How to best manage your data to make the most of it for your research ?

How to ensure that open data works for research ?

Preliminary question :

Data Capture ?

The main focus is on building framework and solution to store data

Daniel Jacob

INRA UMR 1332 BFP – Metabolism Group Bordeaux Metabolomics Facility

THE FAIR DATA PRINCIPLES

The "FAIR" principles **define the basis** for data sharing easily to find, accessible, interoperable and reusable.

However, it is to the <u>communities</u> to specify the actions necessary for their implementation

The implementation of FAIR principles is a process that must be thought of in a progressive and community-oriented way.

It must be integrated into existing practices to ensure that they evolve without interruption and in a way that is acceptable to the various actors

The role of a <u>data authority</u> is to translate the <u>principles</u> into <u>standards</u> in agreement with the concerned <u>communities</u>

Use-Case

Experiment Data Tables

Experiment Design

1	A Genotype Manoy Makor, WC	B PlanteID Plant	C D	Treatme	E nt	plants	.tsv														
3	Money Maker_WT	140 C2	ĉ	Control		-															
4	Money Maker WT	222 D15	D	Control																	
5	Money Maker WT	295 F19	F	Control					harv	ests.ts	v										
6	Money Maker	210 524	-	Control					incar e												
7	Money Maker	A E	в С	D	E	F	G	н	I	J											
8	Money Maker	lanteID Lot	Truss	FruitAge	HarvestDa	te HarvestHour F	uitPositior Fr	uitFW Fr	ruitDiamet(Fi	ruitHeight											
9	Money Maker 30	18	5 Truss_5	00.08DPA	403	79 0.51875	4	1.1	13.29	13.17											
10	Money Maker 31	155	5 Truss_5	00.08DPA	403	0.51875	4	1.01	12.38	12.29											
11	Money Maker_32	164	5 Truss_5	00.08DPA	403	9 0.51875	4	1.02	12.28	12.44			camr	NDC to	SV						
12	Money Maker	221	5 Truss_5	00.08DPA	403	9 0.51875	2	1.02	12.8	12.28 B	C	D	Sauit	103.0	.						
13	Money Maker_34	226	5 Truss_5	00.08DPA	403	0.51875	3	0.81	1 Lot	SampleID	NhEruit	GellyEW	GellyEruit	BER							
14	Money Maker 35	322	5 Truss_5	00.08DPA	403	0.51875	2	0.79	2	1 1	- Contraite	10 2.4	83 0.2	83 EALSE							
15	Money Maker 30	343	5 Truss_5	00.08DPA	403	0.51875	4	0.69	3	1 2		10 2.	B3 0.2	83 FALSE							
16	Money Maker 37	361	5 Truss_5	00.08DPA	403	0.51875	5	1.06	4	2 3		8 4	05 0.506	25 FALSE				_			
17	Money Maker_ 38	369	5 Truss_5	00.08DPA	403	0.51875	4	0.73	5	3 5		10 3	.3 0.	33 FALSE	cor	npou	inds.	tsv			
18	Money Maker_ 39	372	5 Truss_5	00.08DPA	403	0.51875	5	1.21	6	3 6		10 3	3 0	33 EALSE	••••						
19	Money Maker_40	A .	в	C E	E	F	G	н	I	J	К	L	м	N	0	P					
20	Money Maker_41	1 SampleID DP	PA Massi	Before MassN	IIA RDT	Starch1	Starch2	RHAMNOSE	ARABINOSE	XYLOSE M.	ANNOSE	GALACTOSE	GLUCOSE	OsesN	PoidsAU F	oidsTotal F	Þ.				
21	Money Maker_42	2 363	15	0.192	0.1002	i2.19 36.55	0.19074531	0.89	2.17	1.73	1.2	5.99	11.31	23.29	7.17	30.46					
22	Money Maker 45	3 369	15	0.107	0.0511	7.76 32.43	0.15487598	0.74	2.19	1.68	1.3	6.03	8.51	20.45	7.35	27.8					
23	Money Maker 45	4 373	15	0.166	0.0771 4	46.45 32.05	0.14885874	0.93	2.44	2.56	2.95	9.3	18.18	36.36	10.88	47.24					
24	Money Maker 45	5 375	15	0.14	0.0684 4	18.86 34.89	0.17046257	0.71	1.89	1.98	2.04	7.33	10.47	24.42	8.79	33.21		er	17Vm	ies te	SV.
25	Money Maker_40	6 429	28	0.104	0.0431 4	1.44 19	A	в	С	D	E	F	G	н	I	J	К		M Y	143.63	0
26	Money Maker_**	7 431	28	0.169	0.0841	19.76 34 1	SampleID	PGM	F16BP_Cyt	PyrK Cit	6 Р	PI Ac	oS PF	K Fru	S F16E	P_Stron GluS	ISOI	DH_NAD Enos	s ISO	DH_NADI PE	PC
27	woney waker_wi	8 433	15	0.187	0.0916	8.98 3 2	1	NA	8.97	1599.53	64.53	2767.89	1172.28	192.05	876.13	523.57	722.19	508.99 NA	NA		93
20	Money Maker_WT	9 435	15	0.179	0.092	51.4 35 3	3	6844.78	85.02	1839.39 NA		3373.46	2014.02	263.33	984.08	634.14	622.22	975.77	514.4	133.6	11
29	Money Maker_WT	.0 445	26.7	0.156	0.0612	9.23 18 4	5	5336.12	14.58	1399.41	65.84	2642.21	980.02	184.31	743.8	445.98	518.01	555.54	588.57	167.86	99
21	Money Maker_WT	.1 451	28	0.09	0.035	8.89 18 5	7	5376.43	23.81	1333.66	105.67	2663.67	1349.45	147.18	807.87	501.92	915.19	572.33	676.61	87.43	27
22	Money Maker_WT	2 457	28	0.148	0.0707	7.77 31 6	9	5230	25.21	1271.13	110.25	2575.94	865.05	177.67	792.12	459.77	510.8	421.23	504.23	231.52	81
52	money maker_vvr	403	20.7	0.100	0.0415	9.12 19 /	100	5416.24	24.19	1833 13	168.54	2272.79	869.08	197.73	971.88	407.71	614 79	410.04	645.49	221.32	60
	-	5 522	28	0.107	0.0555	9 16 24 0	103	8054 61	33,14	2128.92	64.59	3128.5	1830.77	270.3	1008.07	778.47	1271.77	965.12	530.51	68.32	9
		6 1025	20	0.126	0.044	24 24 27 2 1 1	113	3997.96	0.7	3053.11	44.2	2330.09	719.39	250.87	1223.19	360.15	526.31	437.56	548.96	194.09	84
		7 1027	53	0.092	1 0 2 5 2	739 1	1 115	5459.74	23.73	1944.78	59.71	3338.61	1168.66	246.51	1039.7	526.42	606.25	607.02	557.28	163.25	1
	-	8 1057	56	0.081	0.0182	2.47	2 117	7509.32	1.71	1593.34	8.34	2597.87	1035.6	260.67	1019.02	663.14	986.63	632.42	579.25 NA		90
	-	9 1067	53	0.089	0.022	4.72 0 1	3 119	6018.59	21.54	1624.31	50.1	2755.34	1245.73	243.07	915.78	530.86	832.47	659.72	518.63	91.02	87
		20 1069	53	0.134	0.022	7.09 0 1	4 361	3967.66	12.54	786.54	88.85	1828.44	363.23	131.41	525.24	268.55	337.81	210.84	581.39	118.38	61
	-	1 1103	26.7	0.098	0.0368	7.55 13	5 363	4753.73	17.77	728.5 NA		1869.46	450.13	171.89	593.3	357.74	220.39	247.36	587.58	20.21	86
	3	2 1131	56	0.116	0.0257	2.16 0	5 365	3836.19	4.16	603.74	31.55	1836.44	330.26	131.87	499.38	208.85	249.95	190.41	545.06	58.85	57
	2	1163	53	0.108	0.0248	2.96 0	7 367	4.11	4.87	507.67	7.39	1371.13	573.06	128.65	390.78	283.25	304.36	301.7 NA		168.46	83
						1	3 369	3798.59	15.14	703.9	82.78	1473.25	286.02	120.11	438.09	260.44	240.08	204.19	500.82	88.22	
						1	371	5610.69	14.69	1092.42	99.09	2384.35	/99.55	182.18	812.09	425.56	583.97	366.29	639.19	45.01	127
						2	373	4220.68	31.7	592.57	14.81	1654.27	602.62	150.23	480.9	283.92	304.94	256.53	700.52 NA	41.26	6
						2	2 3/3	3100.01	21.08	467.95	1.32	1012.42	369.89	93.32	206.48	170 71	196.26	202.93	660.62	41.30	50
						2	⊾ <u>3//</u>	5100.01	21.21	407.33	00.43	1033.02	303.03	33.32	200.40	1/0./1	10.20	140.00	000.02	124.30	30

Research question ⇒ Project ⇒ Experiment ⇒ Experimental set-up

the classical challenges for fast using data by every partner are data storage and data access

The experimental context: recurrent needs / wishes

avoid the implementation of a RDBDMS

ODAM Framework Open Data for Access and Mining

Purposes

Objectives

- make research data locally or broadly accessible all along the project
- allow any (data) scientists to be able to explore the dataset and then extract a subpart or the totality of the data according to their needs
- allow data to be selected then, downloadable by web API
- allow data and analysis to be visualized online

Guideline keywords

• simplicity, flexibility, efficiency

Use-Case

4 📷 Bibliothèques 🛯 📄 DATA 🛯 퉲 DATA (C:) bsflow Image: Image is a local straight iteration is a local straight 🛯 📗 ODAM 🔺 📗 data frim1

Nom
퉬 images
a_attributes.tsv
📄 aliquots.txt
aminoacids.txt
📄 compounds.txt
📄 enzymes.txt
FRIM1Quantities.tx
infos.md
📄 lipids_ag.txt
📄 plants.txt
plato_HexosesP.txt
📄 pools.txt
📋 qnmr_metabo.txt
📋 qnmr_pools.txt
s_subsets.tsv
samples.txt

A	В	С	D	E	F	G	Н		J
SampleID	Treatment	DevStage	FruitAge	FruitPosition	FruitDiamete	FruitHeight	FruitFW	Rank	Truss
115	Control	FF.01	07DPA	3	11.95	10.42	0.81	Α	T7
121	Control	FF.03	22DPA	3	36.13	31.77	21.43	Α	T6
164	Control	FR.01	42DPA	2	51.09	46.85	64.05	Α	T5
353	Control	FR.04	55DPA	5	48.28	43.35	66.64	Α	T5
355	Control	FR.04	55DPA	3	49.84	44.93	<mark>66.98</mark>	Α	T5
413	Control	FR.02	47DPA	1	60.48	54.23	106.13	Α	T7
512	Control	FF.03	21DPA	NA	41	35.82	37.22	Α	TA
117	Control	FF.01	07DPA	3	13.44	12.39	1.14	A	T7
536	Control	FR.02	47DPA	NA	59.4	49.05	87.28	A	ТА
544	Control	FR.03	50DPA	NA	57.31	47.69	92.86	A	ТА
158	Control	FF.04	35DPA	5	58.38	49.3	92.86	A	T5
109	Control	FF.03	22DPA	7	43.37	35.77	38.73	A	T5
134	Control	FF.02	15DPA	3	27.89	23.8	9.88	Α	T7
31	Control	FF.01	08DPA	4	NA	NA	0.48	Α	T6
179	Control	FF.03	28DPA	3	53.68	45.43	65.34	A	T7
383	Control	FF.04	34DPA	5	47.04	41.19	48.96	A	T7
425	Control	FR.04	55DPA	2	62.74	50.27	115.3	A	T7
520	Control	FF.03	30DPA	NA	48.86	41.52	52.94	A	TA
419	Control	FR.03	50DPA	2	55.63	48.02	86.79	A	T7
138	Control	FF.02	15DPA	6	27.96	22.14	9.69	A	T7
143	Control	FF.03	29DPA	4	48.45	42.92	51.35	A	T6
365	Control	FR.02	47DPA	5	55.11	44.9	71.82	А	T6
127	Control	FF.03	27DPA	3	45.71	43.28	47.8	А	T5
188	Control	FR.01	42DPA	3	55.38	47.1	77.39	А	T6

Daniel Jacob – INRA UMR 1332 BFP – Oct 2019

EDTMS

Use-Case

4

ODAM Framework Open Data for Access and Mining

					_										
	Nom	Α	В	А	В	С	D	E	F	G	н	1	J	к	L
Bibliotheques		SampleID	AliquotID	AliquotID	PGM	F16BP_Cyt	PyrK	CitS	PPI	AcoS	PFK	FruS	F16BP_Stron(GluS	ISODH_NAD
🛯 📩 DATA	🃗 images	:	1 1	1	NA	8.97	7 1599.53	64.5	2767.89	1172.28	192.05	876.13	523.57	722.19	508.99
4 🌆 DATA (C:)	a_attributes.tsv	:	1 2	з	6844.78	85.02	1839.39	NA	3373.46	2014.02	263.33	984.08	634.14	622.22	975.77
	aliquots tyt	:	2 3	5	5336.12	14.58	3 1399.41	65.84	2642.21	980.02	184.31	. 743.8	445.98	518.01	555.54
DSTIOW			2 4	7	5376.43	23.81	L 1333.66	105.6	2663.67	1349.45	147.18	807.87	501.92	915.19	572.33
Image:	aminoacids.txt		3 5	9	5230	25.21	L 1271.13	110.2	2575.94	865.05	177.67	792.12	459.77	510.8	421.23
Improved to the second seco	compounds.txt		3 6	11	6147.04	24.19	754.24	68.6	5 2272.79	1005.74	144.17	641.46	467.71	598.68	416.04
			4 7	109	5416.24	35.57	7 1833.13	168.54	2779.48	869.08	197.73	971.88	494.3	614.79	660.68
Image:	enzymes.txt		1 9	111	8054.61	33.14	1 2128.92	64.5	3128.5	1830.77	270.3	1008.07	778.47	1271.77	965.12
4 퉲 ODAM	FRIM1Quantities.txt	-	- 0 5 0	113	3997.96	0.7	7 3053.11	. 44.3	2 2330.09	719.39	250.87	1223.19	360.15	526.31	437.56
🚛 🛄 data	infos.md		5 10	115	5459.74	23.73	3 1944.78	59.7	3338.61	1168.66	246.51	1039.7	526.42	606.25	607.02
frim1	linida ag tat		5 10	117	/ /509.32	1./1	1593.34	8.34	2597.87	1035.6	260.67	1019.02	663.14	986.63	632.42
	ipids_ag.txt	-		119	0018.59	21.54	1024.31	. 50.	2/55.34	1245.73	243.07	915.78	530.86	832.47	059.72
	plants.txt		6 12	301	4752.72	12.54	+ /80.54	88.8	1828.44	303.23	131.41	525.24	208.55	337.81	210.84
Canto DOTALINO	plato HexosesP.txt	3	1 109	265	2926.10	17.77	7 720.J	NA 21.5	1926 44	430.15	121 07	/ 353.5	200 05	220.35	190.41
		3	1 110	267	7 A 11	4.10	7 507.67	7 20	1271 12	572.06	122.65	499.38	208.85	245.55	201.71
00000000	pools.txt	3	2 111	369	3798 59	15.1/	1 703.9	82.7	1473 25	286.02	120.03	438.09	260.44	240.08	204 19
	📄 qnmr_metabo.txt	3	2 112	303	5610.69	14.69	1092.42	99.00	2384 35	799 55	182.18	812.09	425 56	583.97	366.29
	anmr pools.txt	3	3 113	373	4220.68	31.7	7 592.57	14.8	1654.27	602.62	150.23	480.9	283.92	354.94	256.53
		3	3 114	375	3342.92	13.68	3 557.38	1.3	1612.42	359.41	119.45	407.36	279.22	290.21	202.93
	s_subsets.tsv	34	4 115	377	3100.01	21.21	L 467.95	60.4	PPIACOSPPKPrus	196.26	146.66				
	samples.txt	34	4 116	379	NA	NA	584.29	26.1	1787.02	668.52	158.95	438.82	262.62	334.18	291.38
		3.	5 117	381	3483.95	8.98	3 771.26	13.3	1514.18	497.3	115.14	337.25	234.69	271.34	216.68
		3	5 118	384	4011.16	4.85	5 590.28	13.7	1245.94	378.87	109.77	344.62	193.74	165.72	196.86
		3	6 119	385	1767.14	11.97	7 351.52	43.9	881.43	174.81	85.89	91.79	127.57	82.19	135.55
		3	6 120	387	1907.36	10.54	1 268.66	36.3	964.63	135.77	70.58	137.41	108.43	151.45	110.26
		9	7 361	389	1843.23	10.37	7 214.02	22.7	837.37	82.88	85.74	141.82	124.58	61.97	120.31
		9	7 362	391	2322.24	15.06	5 349.62	52.1	1014.67	230.62	80.48	185.05	187.63	56.33	151.72
			, 502	393	3826.41	18.98	466.4	103.64	1485.31	212.96	140.72	304.75	184.27	181.77	169.72
		aliqu	uots.txt	395	2483.08	18.13	556.97	63.2	1154	286.7	103.31	. 193.56	127.9	138.77	172.3
		•		397	4924.26	17.89	1327.67	50.7	2225.01	657.4	160.33	638.3	398.38	458.04	495.24

Data capture... as far upstream as possible

Take into account users operating methods and work habits

Spreadsheet as a central tool

Experiment Design (DoE)

samples : Sample features

· · ·	D	L L	D	E	F	G	H		J
SampleID	Treatment	DevStage	FruitAge	FruitPosition	FruitDiamete	FruitHeight	FruitFW	Rank	Truss
115	Control	FF.01	07DPA	3	11.95	10.42	0.81	A	T7
121	Control	FF.03	22DPA	3	36.13	31.77	21.43	A	T6
164	Control	FR.01	42DPA	2	51.09	46.85	64.05	A	T5
353	Control	FR.04	55DPA	5	48.28	43.35	66.64	A	T5
355	Control	FR.04	55DPA	3	49.84	44.93	66.98	А	T5
413	Control	FR.02	47DPA	1	60.48	54.23	106.13	A	T7
512	Control	FF.03	21DPA	NA	41	35.82	37.22	A	TA
117	Control	FF.01	07DPA	3	13.44	12.39	1.14	A	T7
536	Control	FR.02	47DPA	NA	59.4	49.05	87.28	A	TA
544	Control	FR.03	50DPA	NA	57.31	47.69	92.86	Α	TA
158	Control	FF.04	35DPA	5	58.38	49.3	92.86	A	T5
109	Control	FF.03	22DPA	7	43.37	35.77	38.73	A	T5
134	Control	FF.02	15DPA	3	27.89	23.8	9.88	A	Т7
31	Control	FF.01	08DPA	4	NA	NA	0.48	A	T6
179	Control	FF.03	28DPA	3	53.68	45.43	65.34	А	T7
383	Control	FF.04	34DPA	5	47.04	41.19	48.96	A	Т7
425	Control	FR.04	55DPA	2	62.74	50.27	115.3	A	T7
520	Control	FF.03	30DPA	NA	48.86	41.52	52.94	A	TA
419	Control	FR.03	50DPA	2	55.63	48.02	86.79	A	T7
138	Control	FF.02	15DPA	6	27.96	22.14	9.69	A	T7
143	Control	FF.03	29DPA	4	48.45	42.92	51.35	А	T6
365	Control	FR.02	47DPA	5	55.11	44.9	71.82	A	T6
127	Control	FF.03	27DPA	3	45.71	43.28	47.8	A	T5
188	Control	FR.01	42DPA	3	55.38	47.1	77.39	A	T6

Data

Well organized data

- Each variable forms a column
- Each observation forms a line
- Each type of "unit observational" forms a table

necessary and indispensable step towards « Linked Open Data ».

Promote non-proprietary format like CSV or TSV

≠ notepad !

Experiment Design (DoE)

samples : Sample features

А	В	С	D	E	F	G	Н	I	J
SampleID	Freatment	DevStage	FruitAge	FruitPosition	FruitDiamete	FruitHeight	FruitFW	Rank	Truss
115	Control	FF.01	07DPA	3	11.95	10.42	0.81	Α	Т7
121	Control	FF.03	22DPA	3	36.13	31.77	21.43	Α	Т6
164	Control	FR.01	42DPA	2	51.09	46.85	64.05	Α	Т5
252	h	5R.04	55DPA	5	48.28	43.35	66.64	А	T5
Idon	tifior	[:] R.04	55DPA	3	49.84	44.93	66.98	А	T5
luen	unei	[:] R.02	47DPA	1	60.48	54.23	106.13	А	Т7
512	Control	FF.03	21DPA	NA	41	35.82	37.22	А	ТА
117	Control	E	Ą	3	13.44	12.39	1.14	Α	Т7
536	Control	Facto	rs 🔬	NA	59.4	49.05	87.28	А	ТА
544	Control	11.05	A	NA	57 31	47 69	92.86	А	TA
158	Control	FF.04	35DPA				92.86	А	Т5
109	Control	FF.03	22DPA		uantit	atives	38.73	А	Т5
134	Control	FF.02	15DPA	ر	21.05	ں.دے	9.88	А	Т7
31	Control	FF.01	08DPA	4	NA	NA	0.48	А	Т6
179	Control	FF.03	28DPA	3	53.68	45.43	65.34	А	Т7
383	Control	FF.04	34DPA	5	47.04	41.19	48.96	^	тт
425	Control	FR.04	55DPA	2	62.74	50.27	115.3	0	litative
520	Control	FF.03	30DPA	NA	48.86	41.52	52.94	Qua	IIIdliv
419	Control	FR.03	50DPA	2	55.63	48.02	86.79	н	17
138	Control	FF.02	15DPA	6	27.96	22.14	9.69	А	Т7
143	Control	FF.03	29DPA	4	48.45	42.92	51.35	Α	Т6
365	Control	FR.02	47DPA	5	55.11	44.9	71.82	А	Т6
127	Control	FF.03	27DPA	3	45.71	43.28	47.8	А	Т5
188	Control	FR 01	42DPA	3	55 38	47 1	77 30	Δ	T6

X≣

Whatever the kind of experiment, this assumes a design of experiment (**DoE**) involving individuals, samples or whatever things, as the main objects of study (e.g. plants, tissues, bacteria, ...)

This also assumes the observation of dependent variables resulting of effects of some controlled experiment factors.

Moreover, the objects of study have usually an identifier for each of them, and the variables can be quantitative or qualitative.

Data

Well organized data

- Each variable forms a column
- Each observation forms a line
- Each type of "unit observational" forms a table

Promote non-proprietary format like CSV or TSV

C

DevStage

FF.01

FF.03

FR.01

⁻R.04

[:]R.04

[:]R.02

FF.03

FF.04

FF.03

FF.02

FF.01

FF.03

FF.04

FR.04

FF.03

FR.03

FF.02

FF.03

FR.02

FF.03

FR.01

D

FruitAge

07D

22D

42D

55DF

55DP

47DPA

21DPA

....A

35DPA

22DPA

15DPA

08DPA

28DPA

34DPA

55DPA

30DPA

50DPA

15DPA

29DPA

47DPA

27DPA

42DPA

NA

Factors

samples : Sample features

B

Freatment

115 Control

121 Control

164 Control

Identifier

512 Control

117 Control

536 Control 544 Control

158 Control

109 Control

134 Control

31 Control

179 Control

383 Control

425 Control

520 Control

419 Control

138 Control

143 Control

365 Control

127 Control

188 Control

Α

SampleID

Row of the invidual plant on the table

T7

Т6

Τ6

T5

Т6

Position on the stem of the truss

9.69 A

51.35 A

71.82 A

47.8 A

77.39 A

22.14

42.92

43.28

44.9

47.1

Data

 \Rightarrow Metadata : not just on the "top" linked to datasets but more deeply linked to the variables.

5

2

2

6

З

3

Rank

Truss

27.96

48.45

55.11

45.71

55.38

Promote non-proprietary format like CSV or TSV

categories

factor

identifier

qualitative

quantitative

Metadata

Feature

Feature

Promote good practices Minimal but relevant Metadata

Metadata Files

 Our approach, by adjoining some minimal but relevant metadata, gives access to the data themselves with the possibility to explore and mine them.

For that, 2 definition files for associate metadata are required

- s_subsets.tsv: a definition file allowing each data subset file to be associated with a concept
- a_attributes.tsv: a definition file allowing each attribute (concept/variable) to be annotated with some minimal but relevant metadata

ODAM Framework Open Data for Access and Mining

Promote good practices

Minimal but relevant Metadata

Metadata Files

Metadata file allowing to associate a key concept to each data subset file

Minimal but relevant Metadata

ODAM Framework Open Data for Access and Mining

EDTMS

Daniel Jacob – INRA UMR 1332 BFP – Oct 2019^{Attribute} ⇔ Variable, Feature, … (e.g. Plants, Fruits, Glucose, Rank, ….)

The data is thus "decompartmentalized", a sine qua non condition for the Web of
Data

(e.g. a local disk, NAS or distant storage space) should allow users to **access them by web API**

No database schema, no programming code are required

Application Programming Interface

CLIENT

REST query

EDTMS

Make both metadata and data available for data mining

REST Services: hierarchical tree of resource naming (URL)

With the help of the two metadata files

Data can be explored and mined based on some minimal but relevant metadata

PI

Open Data for Access and Mining ⁶⁰⁰ ⁶⁰⁰ https://pmb-bordeaux.fr/odamsw/

Request URL

http://pmb-bordeaux.fr/getdata/tsv/friml/(activome,qNMR_metabo)/sample/365?limit=10

	-	and a property of			THE RANGE WARRANT	and the second second		_	11		in the second second second	-		- 1))				
Identifiers (Plant	ID Rai	iki 'lanti	Num Treat iei	at Sample	ID Tru	ss DevSta	ge Fruit/ ge	(CAliquot	ID PGM F16BP_C	t PyrK	CitS	PPI	AcoS	CC PoolII	D glucos	saccharo	se fructos	e galactose
identifiers	AI	A	1	Control	115	Τ7	FF.01	07DPA	397	4924.26 17.89	1327.67	50.79	2225.01	657.4	F1	409 3050-	483 70.361992	274 372.90022	229 0
	AL	-	1	Control	1	10	FF.03	22DPA	400	3123.06 8.67	450.85	23.53	1194.12	2 288.49	19	725.0013-	175 33.077867	7 871.70364	417 0
	AI	A	1	Control	164	T5	FR.01	42DPA	493	1597.7 5.16	237.69	34.63	578.74	84,92	F17	723.1068	/85 27.736669)46 970.4150	597 0
	Al	A	1	Control	353	T5	FR.04	55DPA	1019	779.85 17.04	373.57	NA	395.51	153.66	F23	801.76240	559 27.508535	514 1103.4600	076 4.104895086
	A2	A	2	Control	355	T5	FR.04	55DPA	1023	635.13 9.08	300.12	NA	338.39	100.22	F23	801.76246	559 27.508535	514 1103.4600	076 4.104895086
Merging &	A2	A	2	Control	413	T7	FR.02	47DPA	1139	1073.54 10.4	185.82	20.02	336.79	113.81	F20	965.32610	579 31.793542	234 1155.4742	234 3.12877424
	A3	A	3	Control	117	T7	FF.01	07DPA	401	3698.58 NA	987.72	33.27	2091.11	637.95	F1	409.3950-	483 70.361992	274 372.90022	229 0
selection of data	A4	Α	4	Control	158	T5	FF.04	35DPA	481	1702.19 24.39	276.28	NA	769.92	214.97	F15	751.84243	341 23.048502	25 948.72503	199 0
1	AD	an	tś	Control	sän	npla	EF.03	22DPA	385	activor	n ³ 6 ⁻⁵²	43.95	881.43	174.81	FS	651,3224	WMR ³⁶	576 798 61 190	tho
subsets	Ab	А	- 3	Control	134	17	FF.02	15DPA	433	3115.52 19.08	911.21	64.73	2049.42	2 296.3	F6	619.3210	382 45.830762	182 651.0915.	575 0
	A6	A	6	Control	31	T6	FF.01	08DPA	109	5416.24 35.57	1833.13	168.5	4 2779.48	8 869.08	F3	356.3376-	194 48.891752	215 353.45550	02 0
	A6	A	6	Control	179	T7	FF.03	28DPA	523	1438.53 11.84	348.65	6.41	494.48	84.64	F11	966.86033	\$72 27.470901	189 1062.9960	002.0
	A6	A	6	Control	383	T7	FF.04	34DPA	1079	1419.29 3.81	289.87	20.35	778.23	124.73	F14	873.6366	279 22.272649)49 1029.9433	239 0
	A6	A	6	Control	425	T7	FR.04	55DPA	1163	348.32 3.47	233.8	98.62	185.62	71.07	F25	1128.5265	05 29.071204	456 1339 549	16 5.64362444
	A 7	A	7	Control	419	T7	FR.03	50DPA	1151	563.66 13.85	245.98	64.19	341.19	87.64	F22	1050.4866	53 35.661030	031 1243.7499	97 3.503144469
- Augida lata of data	AS	A	8	Control	138	T7	FF.02	15DPA	441	2869.19 22.96	702.99	19.24	1458.00	5 435.54	F6	619.3250	382 45.83076?	382 651.09152	378 0
- Avoids lots of data	A8	А	8	Control	143	T6	FF.03	29DPA	451	2273.12 9.52	445.16	NA	982.39	210.03	F12	679.2961	308 23.94077	746 857.85192	232 0
	A8	Α	8	Control	365	T6	FR.02	47DPA	1043	NA 10.92	304.68	6.12	576.56	145.05	F19	756.68850)92 33.907514	466 975.48530	558 1.544911295
manipulation	A9	Α	9	Control	127	T5	FF.03	27DPA	421	2098.25 13.85	431.06	15.27	841.83	203.7	F10	623.27292	217 27.382711	169 790.63430	093 0
	A9	Α	9	Control	188	T6	FR.01	42DPA		-									
Eacilitates linking both	A10	A	10	Control	33	T6	FF.01	08DPA	·· (act	tivome,qNN	1R_m	eta	bo)						
	A14	Α	14	Control	99	T5	FF.02	15DPA	•	/ •			ر ملم مم	-			6		
motodata and data for	A14	Α	14	Control	103	T6	FF.02	15DPA		∽ pia	ants -	- sai	mpie	5				liar (15	
inclauala anu uala iui	A14	A	14	Control	119	T7	FF.01	07DPA			-	⊦ (al	iauo	ts+ar	tivon	ne)			
dete volution	A14	Α	14	Control	119	T7	FF.01	07DPA				(ui	1940	cs ac				•	
data mining	A14	А	14	Control	181	T7	FF.03	28DPA			-	+ (po	ools+	-aNN	1R me	etabo)		amples	
U	A14	Α	14	Control	367	T6	FR.02	47DPA				M ²	-	•	_	,			
	A15	Α	15	Control	97	T5	FF.02	15DPA											
	A15	A	15	Control	123	T6	FF.03	22DPA							_				
	A15	Α	15	Control	377	T6	FR.04	55DPA							alio	ruots			0.00
	A15	A	15	Control	423	T 7	FR.03	50DPA											<u> </u>
	A17	Α	17	Control	136	T7	FF.02	15DPA			_	-		/	/				
													*	_	_	*	*		
										eliwali metabo		taboEV	N at	tivome	plato h	nexosesP	lipids AG	AminoA	cid oMS m

ODAM - Data Explorer

Visual data exploration a first key step for deeper analyses

https://pmb-bordeaux.fr/dataexplorer/

ODAM

EDTMS

{ } AP

plotly https://plot.ly/

Example online

https://pmb-bordeaux.fr/dataexplorer/?ds=frim1

Image: Image
Image: Multivariate
Bivariate Multivariate About ERASysBio++ FRIM Project Fruit Integrative Modelling
Multivariate INVENIO, Ste Livrade, France About ERASysBio++ FRIM Project Fruit Integrative Modelling
• About ERASysBio++ FRIM Project Fruit Integrative Modelling
ERASysBio++ FRIM Project Fruit Integrative Modelling
Fruit Integrative Modelling
The project aimed to build a virtual tomato fruit that enables the prediction of metabolite levels given genetic and environmental inputs, b iterative process between laboratories which combine expertise in fruit biology, ecophysiology, theoretical and experimental biochemistry and biotechnology.
© INRA UMR 1332 BFP - Metabolism Team - Yves Gibon - 2017

With the help of the two metadata files L Nom ▲) Bibliothèques 🔺 📄 DATA 📗 images a_attributes.tsv 4 퉲 DATA (C:) aliquots.txt bsflow Þ 🚹 aminoacids.txt nmr_examples compounds.txt nmrAnnot { } _____API enzymes.txt Þ 🚹 nmrspec FRIM1Quantities.txt ODAM ⊿ 🛄 🔺 📗 data infos.md lipids_ag.txt frim1 > plants.txt > _____ fish2015 plato_HexosesP.txt ... pools.txt

qnmr_metabo.txt

qnmr_pools.txt

s subsets.tsv samples.txt

∎ frim1

DAM	

•

FRIM1

Subset	Description	dentifier	WSEntry	CV_Term
amples	Sample features	SampleID	sample	[OBI_1110046] organ harvesting
eliwall_metabo	Cell wall Compound quantifications	AliquotID	aliquot	[CHEBI_24431] chemical entity
ellwall_metaboFW	Cell Wall Compound quantifications (FW)	AliquotID	aliquot	[CHEBI_24431] chemical entity
ictivome	Activome Features	AliquotID	aliquot	[CHEBI_24431] chemical entity
MS_metabo	MS Compounds quantification	PoolID	pool	[CHEBI_24431] chemical entity
NMR_metabo	NMR Compounds quantification	PoolID	pool	[OBI_1110046] organ harvesting
lato_hexosesP	Hexoses Phosphate	AliquotID	aliquot	[CHEBI_24431] chemical entity
pids_AG	Lipids AG	AliquotID	aliquot	[CHEBI_24431] chemical entity
minoAcid	Amino Acids	AliquotID	aliquot	[CHEBI_24431] chemical entity

Daniel Jacob – INRA UMR 1332 BFP – Oct 2019

......

-

Data Subset Infor	rmation				-
Subset	Description	ldentifier	WSEntry	CV_Term	¢
fish	Fish features	Poisson_id	poisson	[null] NULL	
plasma	Plasma Biochimie	Plasma_id	plasma	[null] NULL	
foiemuscle	Foie Muscle Vol et Poids	Sample_id	sample	[null] NULL	
plasmabuckets	Plasma Buckets	Plasma_id		[null] NULL	
foiebuckects	Foie Buckets	Faq_id	faq	[null] NULL	
musclebuckets	Muscle Buckets	Maq_id	maq	[null] NULL	
muscleAG	Compo AG muscles analyses Numea	MAG_id	muscleag	[null] NULL	
Showing 1 to 7 of 7 ent	ries				

ODAM - Data Explorer = frim1 Activome Features - FRIM1

ODAM - Data Explorer ≡ frim1 Activome Features -

FRIM1

Using Data

Activome Features

•

	 Subset Information 	Columns to show:	Copy Excel												Sea	rch:	
- 1	📶 Data Table	Rank	Treatmen	Dev Stage 🕼	FruitAge	AliquotID	PGM 🕴	F16BP_Cyt	РугК 🕴	CitS	PPI 🇯	AcoS	PFK	F16BP_Strom	a 🍦 🛛	GluS	ISODH_NAD
	al Univariate	 PlantNum Treatment 						7						AI			A
		SampleID	Control	FF.01	07DPA	397	4924.26	17.89	1327.67	50.79	2225.01	657.4	160.33	398	.38 4	158.04	495.24
	Lill Bivariate	Truss	Control	FE03	22DPA	409	3123.06	8.67	450.85	23.53	1194.12	288.49	125.19	20	9.7 :	218.39	188.53
	🔟 Multivariate	Dev Stage FruitAge	Contro			493	1597.7	5.16	237.69	34.63	578.74	84.92	66.91	72	.58	47.22	133.34
	About	HarvestDate	Contre	port as	S		- @ - B	Ŧ				ODA	M - Data Explorer.	.xlsx - Excel		6.47	314.05
		HarvestHour	Control	FR.04	55DPA	FICHIER AG	CCUEIL Per	so INSERTION	MISE EN PAGE	E FORMULES	DONNÉES	RÉVISION	AFFICHAGE D) ÉVELOPPEUR		9.9	227.51
		FruitPosition	Control	FR.02	A7DPA	📇 X	Calibri	- 11 - A	≡ = _	& - ₽ Re	envoyer à la ligne a	utomatiquement	Standard	*		21.14	275.09
		FruitDiameter	Control	FF.03	21DPA	Col		18.000		i € Æ ĒR	usionner et centrer	÷	S - % 000	€0 00 Mis	e en f		89.87
		E FruitFW	Control	FF.01	07DPA			Police	G	Alia	nement		Nombre	cond	lition	368.98	336.88
		DW	Control	FR.02	47DPA				fr. T	Freatment						21.28	296.93
		AliquotiD	Control	FR.03	50DPA				₩ Ja	reatment						9.47	306.54
As fa	ir as possible	'GM	Control	FF.04	35DPA											70.67	197.18
		PyrK	Control	FF.03	22DPA	A	B	C D	E F	G H	L J	K	L M	N	0	82.19	135.55
кеер	o the old way o	T Jits	Control	FF.02	15DPA	2 Control	FF.01 0	7DPA 397	4924.3 17.	CY PYR Cits .89 1327.7 50.7	79 2225 657	.4 160.3	398.38 458.04	495.24		265.13	180.87
usin	g the scientist's	S ^{7PI}	Control	FF.01	08DPA	3 Control	FF.03 2	2DPA 409	3123.1 8.	.67 450.85 23.5	53 1194.1 288.	49 125.2	209.7 218.39	9 188.53		814.79	660.68
		lcoS	Control	FF.03	28DPA	4 Control 5 Control	FR.01 4	2DPA 493 5DPA 1019	1597.7 5. 779.85 17.	.16 237.69 34.6 .04 373.57	53 578.74 84. 395.51 153.	92 66.91 56 66.41	72.58 47.22 37.27 6.47	2 133.34 7 314.05		34.81	96.16
worl	ksneets	РЕК	Control	FF.04	34DPA	6 Control	FR.04 5	5DPA 1023	635.13 9.	.08 300.12	338.39 100.	22 64.27	33.65 9.9	227.51		55.6	122.12
		F16BP Stroma	Control	FR.04	55DPA	7 Control 8 Control	FR.02 4 FF.03 2	7DPA 1139 1DPA 1373	1073.5 10 1446.7 6.	0.4 185.82 20.0 .44 259.53	2 336.79 113. 493.07 102.	81 53.05 94 68.73	43.88 121.14 85.44	275.09 89.87		15.32	161.75
		GluS	Control	FF.03	30DPA	9 Control	FF.01 0	7DPA 401	3698.6	987.72 33.2	27 2091.1 637.	95 118.8	247.34 368.98	3 336.88		9.84	122.83
		ISODH_NAD	Control	FR.03	50DPA	10 Control 11 Control	FR.02 4	7DPA 1421 0DPA 1437	1337 6. 484.66 13.	.91 226.24 .28 172.04 24.1	508.56 110. 19 348.75 79.	26 86 06 49.86	82.63 21.28 41.97 9.47	3 296.93 7 306.54		28.09	266.62
		EnoS	Control	FF.02	15DPA	12 Control	FF.04 3	5DPA 481	1702.2 24.	.39 276.28	769.92 214.	97 88.58	130.93 70.67	7 197.18		394.7	176.69
		SODH_NADP	Control	FF.03	29DPA	13 Control	FF.03 2	2DPA 385 5DPA 433	1767.1 11. 3115.5 19	.97 351.52 43.9 08 911.21 64.7	95 881.43 174. 73 2049.4 296	81 85.89 3 117	127.57 82.19 241.41 265.13	135.55 180.87		69.56	121.26
		PEPC	Control	FR.02	47DPA	15 Control	FF.01 0	8DPA 109	5416.2 35.	.57 1833.1 168	.5 2779.5 869.	08 197.7	494.3 614.79	660.68		26.46	222.35
		SucCoALig	Control	FF.03	27DPA	16 Control	FF.03 2	8DPA 523	1438.5 11.	.84 348.65 6.4	41 494.48 84. 35 778 23 124	54 70.67 73 68 16	33.81 34.81	1 96.16		90.63	137.55
		MALDH	Control	FR.01	42DPA	18 Control	FR.04 5	5DPA 1163	348.32 3.	.47 233.8 98.6	52 185.62 71.	07 33.76	5.28 15.32	161.75		25.77	114.93
		Ala S	Control	FF.01	08DPA	19 Control	FF.03 3	0DPA 1389	1069.8 9.	.14 189.82 34.2	23 538.35 100.	75 54.16	58.85 9.84	122.83		526.31	437.56
		Fum S	Showing 1 to 25 of	of 255 entries		21 Control	FF.02 1	5DPA 441	2869.2 22.	.96 702.99 19.2	24 1458.1 435.	54 129.4	200.16 394.7	7 176.69			

ODAM - Data Explorer ≡ frim	Activome Features FRIM1	Using Data
Subset Information Information	Session Information options(width=256)	The Comprehensive R Archive Network https://cran.r-project.org
📶 Univariate	options(warn=-1) options(stringsAsFactors=FALSE)	The R package
المال Bivariate	<pre>library(Rodam) # Initialize the 'ODAM' object dh <- new('odamws', 'http://www.bordeaux.inra.fr/pmb/getdata/', 'frim1')</pre>	Rodam CRAN 0.1.4
Multivariate	# Get the Data Tree show(dh)	
About	# Get the data subsets list dh\$subsetNames	
	<pre># Get 'activome' data subset ds <- dh\$getSubsetByName('activome')</pre>	
	# Show all descriptions of variables ds\$LABELS	
	# Show all factors defined in the data subset ds\$facnames	
while allowing	# Show all quantitative variables defined in the data subset ds\$varnames	
a way to be more	# Show all qualitative variables defined in the data subset ds\$qualnames	
efficient	<pre># Display a summary for each quantitative variable summary(ds\$data[, ds\$varnames])</pre>	
	<pre># Boxplot of all variables defined in ds\$varnames Rank <- simplify2array(lapply(ds\$varnames, function(x) { round(mean(log10(ds\$data[, x]), na.rm=T)) })) Rank[!is.finite(Rank)] <- 0 colRank <- Rank - min(Rank) + 1 cols <- c('red', 'orange', 'darkgreen', 'blue', 'purple', 'brown') boxplot(log10(ds\$data[, ds\$varnames]), outline=F, horizontal=T, border=cols[colRank], las=2, cex.axis=0.5)</pre>	

CRAN 0.1.4

The R package **Rodam** The Comprehensive R Archive Network https://cran.r-project.org/web/packages/Rodam/index.html

	-•new	('odam	ws',·'	http://	/pmb	-bordeau	ax.fr/q	etdata/	',.'friml')						5	5
			leve	lName Se	+ TD 1	Identifier	WSEntry			Descrip	tion (Count	<data format=""></data>	tsv		A
nla	nts		1040	indiac be	1	PlantID	nlant			Plant feat	ures	552				
°_	-sampl	es			2	SampleID	sample			Sample feat	ures	1287	2			
	!a	liguots			3	AliquotID	aliguot		1	liquots feat	ures	2571	<datas< td=""><td>et name></td><td></td><td></td></datas<>	et name>		
		cellv	all met	abo	4	AliquotID	aliquot	Cel	l wall Compound	I quantificat	ions	343		fr fr	rim1	
		cellv	all met	aboFW	5	AliquotID	aliquot	Cell Wal	l Compound quar	tifications	(FW)	343				
		activ	/ome		6	AliquotID	aliquot		1	ctivome Feat	ures	1260			(<subset>)</subset>	
	1.1	plate	hexose	зP	10	AliquotID	aliquot		F	lexoses Phosp	hate	1260	<subset></subset>			nnla
	1.1	lipic	is_AG		11	AliquotID	aliquot			Lipid	ls AG	272			Sui	inple
	1.1	°Amino	Acid		12	AliquotID	aliquot			Amino A	cids	342				
	°p	ools			7	PoolID	pool		Pools of	f remaining p	ools	948	<entry></entry>	<category></category>	<entry< td=""><td>></td></entry<>	>
		qMS_n	netabo		8	PoolID	pool		MS Component	s quantifica	tion	399	1 - C		s	amp
		°qNMR_	metabo		9	PoolID	pool		NMR Component	s quantifica	tion	948	•	•		
														<value></value>	<value< td=""><td>></td></value<>	>
													<value></value>			365
• # • ge	et data	from '	samples'	subset	with	a constra	aint									505
dh\$g	getData	ByName ('samples	','sampl	.e/36	5')										
P1	LantID	Rank Pla	antNum 1	reatment	Sam	pleID Trus	s DevSta	ge FruitA	.ge HarvestDate	HarvestHour	Fruit	Position	FruitDiameter	FruitHeight	: FruitFW	
1	E35	E	311	Control		365 1	6 FR.	02 47D	PA 40423	0.5		5	55.46	48.98	83.32	r
2	A17	A	17	Control		365 1	76 FR.	02 47D	PA 40423	0.5		3	56.59	47.77	82.02	
3	A8	А	8	Control		365 1	76 FR.	02 47D	PA 40423	0.5		5	55.11	44.90	71.82	
4	D3	D	210	Control		365 1	76 FR.	02 47D	PA 40423	0.5		5	49.28	44.35	58.28	
5	H11	H	356	Control		365 1	76 FR.	02 47D	PA 40423	0.5		6	46.68	38.69	49.25	

GET http://pmb-bordeaux.fr/getdata/tsv/frim1/(samples)/sample/365

Example based on FRIM - Fruit Integrative Modelling

Retrieving Data within R data and metadata are all available and accessible by scripting languages(R, API)

Merge the activome data AND the metabolome data acquire on the same samples

Load the R ODAM package library(Rodam)

Example based on FRIM - Fruit Integrative Modelling

Reproducible Research ... with R and RStudio

Christopher Gandrud (2015)

Chap II Data Gathering and Storage (70 pages out of 300)

II. 6 - Gathering Data with R

"How you gather your data directly impacts how reproducible your research will be.

If all of your data gathering steps are tied together by your source code, then independent researchers (and you) can more easily regather the data"

II. 7 - Preparing Data for Analysis

"Once we have gathered the raw data that we want to include in our statistical analyses we generally need to clean it up so that it can be merged into a single data file."

This is exactly what the ODAM framework aims to answer in a normalized way the easier and faster as possible

https://github.com/christophergandrud/Rep-Res-Book https://englianhu.files.wordpress.com/2016/01/reproducible-research-with-r-and-studio-2nd-edition.pdf

https://rmarkdown.rstudio.com/authoring_quick_tour.html

Data Dissemination

Schematic Diagram of a Dataset in Dataverse 4.0

Container for your data, documentation, and code.

https://data.inra.fr/

FRIM - Fruit Integrative Modelling Version 1.1

Bénard, Camille; Bernillon, Stéphane; Colombié, Sophie; Cabasson, Cécile; Modelling", https://doi.org/10.15454/9	Eearn about Data Citation Standards.	
Description	The project aimed to build a virtual tomato fruit that enables the prediction of metabolite leve inputs, by an iterative process between laboratories which combine expertise in fruit biology experimental biochemistry, and biotechnology.	els given genetic and environmental , ecophysiology, theoretical and
Subject	Computer science; Information management; Omics; Plant Health and Pathology	
Related Publication	Bénard C., Bernillon S., Biais B., Osorio S., Maucourt M., Ballias P., Deborde C., Colombié G., Gautier H., Rolin D., Génard M., Fernie A., Gibon Y., Moing A. 2015 Metabolomic profilir changes in fruit affected by source-sink relationships. Journal of Experimental Botany Vol. 6 10.1093/jxb/erv151	S., Cabasson C., Jacob D., Vercambre ng in tomato reveals diel compositional 66, No. 11 pp. 3391–3404 doi:
Link to data	https://pmb-bordeaux.fr/dataexplorer/?ds=frim1	

R scripts (Rmd) If applicable Jupyter Notebook (ipynb)

Daniel Jacob – INRA UMR 1332 BFP – Oct 2019

FINDABLE

doi:10.15454/95JUTK

Α

R

https://pmb-bordeaux.fr/dataexplorer/ Danie

ODAM Framework Overview

Data Lifecycle

Data is "keep alive" in the cycle

process

Daniel Jacob – INRA UMR 1332 BFP – Oct 2019

ODAM Framework Overview

Advantages of this approach

data sharing & data availability

- The array of the "plants" may be created even before planting the seeds.
- Similarly, **the array of the "harvests"** can be created as soon as the harvests are done, and this before any analysis.
- Thus, these arrays are **generated only once in the project** and we can set up the sharing soon the seed planting. Then **each analysis comes to complement the set of data as soon as they produce** their own sub-dataset.
- data are accessible to everyone as soon as they are produced,

identifiers centrally managed

- data are archived and compiled, so that it becomes **useless to proceed a laborious investigation to find out who possesses the right identifiers**, etc.

facilitate the subsequent publication of data

- data are already readily available online by web API,
- But nothing prevents to take this data to fill in existing a data repository, by adjoining more elaborate annotations such as Dataverse.

ODAM Framework Overview

Advantages of this approach

minimal effort, maximum efficiency

Format the data

 Based on TSV: choice to keep the good old way of scientist to use worksheets, thus i) using the same tool for both data files and metadata definition files, *ii*) no programmatic skill are required

Give an access through a web services layer

- based on current standards (REST)

Use existing tools

- Spreadsheets, R studio, Spyder, Jupyterlab, BioStatFlow, ...

Develop if needed, lightweight tools

- R/Python scripts, lightweight GUI (R shiny, Dash), Galaxy, ...

Tools for data science

Reproducible Research

Tools for data science

Anaconda Distribution

📲 Windows 🛛 🧯 macOS 🛛 Å Linux

https://www.anaconda.com/distribution/

The World's Most Popular Python/R Data Science Platform

R packages for data science https://www.tidyverse.org/

In particular dplyr provides a grammar of data manipulation, providing a consistent set of verbs that solve the most common data manipulation challenges

http://intelligency.org/ai r.php

Tools for data science Reproducible Research

ODAM Framework

Get the data from ODAM

Compute then plot PCA

Reproducible Research Jupyter Notebook

📮 djacob65 <mark>/ binder_odam</mark>		• Unwatch	✓ 1 ★ Star 0 ¥ Fork	0
♦ Code ① Issues 0 ⑦ Pull requests	0 🎹 Projects 0 📧 Wiki	🗊 Security 🛛 🔟 Insights 🔅 Set	tings	
a repository for Binder using ODAM API	via IPython		E	dit
Manage topics	and an W	1/2-19 - 00		
① 1 commit	🖗 1 branch	🛇 0 releases	1 contributor	
Branch: master - New pull request		Create new file Upload	files Find file Clone or download	environment.yml
Jjacob65 update			Latest commit a61c6b8 2 minutes a	<pre>go</pre>
PyODAM_api_PCA.ipynb		update	5 minutes a	go dependencies:
PyODAM_api_demo.ipynb		update	2 minutes a	go ··-·requests
README.md		update	6 days a	go ··-·pandas
Rodam_api_demo.ipynb		update	2 days a	goscikit-learn
Rodam_api_graphics.ipynb		update	6 days a	go
🖹 environment.yml		update	6 days a	go

https://github.com/djacob65/binder odam

A simple way to share Jupyter Notebooks

https://nbviewer.jupyter.org/github/djacob65/binder odam/

Binder Project is an open community that makes it possible to create sharable, interactive, reproducible environments.

https://mybinder.org/

CHUNK	https://github.com/diacob65/binder.odam								
Github	Git branch, tag, or commit Path to a notebook file (optional)								
	Git branch, tag, or commit	Path to a notebook file (optional)	File 🕶	launch					
	Copy the URL below and share your	Binder with others: cob65/binder_odam/master		Ê					
	Copy the text below, then paste into	your README to show a binder badge: 👩 launch binder		•					

https://mybinder.readthedocs.io/en/latest/introduction.html

Build the

container

docker

docker

Binder The Binder Project is an open community that makes it possible to create sharable, interactive, reproducible environments.

Build logs	hid
Waiting for build to start	
> 6b5d8d4cc0e8	
Step 15/51 : RUN apt-get -qq update && apt-get -qq installyesno-install-recommends	less
nodejs unzip >/dev/null && apt-get -qq purge && apt-get -qq clean &&	rm
-rf /var/lib/apt/lists/*	
> Using cache	
> 1e50324f27b6	
Step 16/51 : EXPOSE 8888	
> Using cache	
> 21f38c7abbb8	
Step 17/51 : ENV APP_BASE /srv	
> Using cache	
> 0a82fdea27d4	
Step 18/51 : ENV NPM_DIR \${APP_BASE}/npm	
> Using cache	
> 6321cd4a6d7e	
<pre>Step 19/51 : ENV NPM_CONFIG_GLOBALCONFIG \${NPM_DIR}/npmrc</pre>	
> Using cache	
> a525c4b81120	
Step 20/51 : ENV CONDA_DIR \${APP_BASE}/conda	

Binder The Binder Project is an open community that makes it possible to create sharable, interactive, reproducible environments.

Push the

the several

docker

docker

nodes

Binder Jupyter Interactive Notebook

hub.gke.mybinder.org/user/djacob65-binder_odam-md2c6mb4/tree		🗟 🕁	Ξ 🕐	ere
💭 Jupyter			Quit	
Files Running Clusters				
Select items to perform actions on them.		Upload	New 🗸	C
	Name 🕹	Last Modified	File size	
PyODAM_api_demo.ipynb		5 minutes ago	49.3 kl	В
PyODAM_api_PCA.ipynb		5 minutes ago	32.8 kF	в
environment.yml		5 minutes ago	115 F	в
README.md		5 minutes ago	14 F	в

Shareable link **Q** launch binder

https://mybinder.org/v2/gh/djacob65/binder_odam/master

See more complete examples :

https://github.com/nuest/reproducible-research-and-giscience https://ajstewartlang.github.io/SIPS 2019/SIPS presentation.html

ODAM Framework Open Data for Access and Mining

https://fr.slideshare.net

"Make your data great now"

"Make your data great again"

towards Open Data and Reproducible Research

towards Linked Open Data

https://bio.tools/ODAM

Thank you for your attention