library(airGRiwrm)
#> Loading required package: airGR
#> 
#> Attaching package: 'airGRiwrm'
#> The following objects are masked from 'package:airGR':
#> 
#>     Calibration, CreateCalibOptions, CreateInputsCrit,
#>     CreateInputsModel, CreateRunOptions, RunModel

An Ungauged station is a virtual hydrometric station where no observed flows are available for calibration.

Why modeling Ungauged station in a semi-distributed model?

Ungauged nodes in a semi-distributed model can be used to reach two different goals:

  • increase spatial resolution of the rain fall to improve streamflow simulation (F. Lobligeois et al. 2014).
  • simulate streamflows in location of interest for management purpose

This vignette introduces the implementation in airGRiwrm of the method developed by Florent Lobligeois (2014) for calibrating Ungauged nodes in a semi-distributed model.

Presentation of the study case

Using the study case of the vignette #1 and #2, we consider this time that nodes 54001 and 54029 are Ungauged. We simulate the streamflow at these locations by sharing hydrological parameters of the gauged node 54032.

Hydrological parameters at the ungauged nodes will be the same as the one at the gauged node 54032 except for the unit hydrograph parameter which depend on the area of the sub-basin. Florent Lobligeois (2014) provides the following conversion formula for this parameter:

x4i=(SiSBV)0.3X4 x_{4i} = \left( \dfrac{S_i}{S_{BV}} \right) ^ {0.3} X_4 With X4X_4 the unit hydrograph parameter for the entire basin at 54032 which as an area of SBVS_{BV}; SiS_i the area and x4ix_{4i} the parameter for the sub-basin ii.

Using Ungauged stations in the airGRiwrm model

Ungauged stations are specified by using the model "Ungauged" in the model column provided in the CreateGRiwrm function:

data(Severn)
nodes <- Severn$BasinsInfo[, c("gauge_id", "downstream_id", "distance_downstream", "area")]
nodes$model <- "RunModel_GR4J"
nodes$model[nodes$gauge_id %in% c("54029", "54001")] <- "Ungauged"
griwrmV05 <- CreateGRiwrm(
  nodes,
  list(id = "gauge_id", down = "downstream_id", length = "distance_downstream")
)
#> Ungauged node '54001' automatically gets the node '54032' as parameter donor
#> Ungauged node '54029' automatically gets the node '54032' as parameter donor
griwrmV05
#>      id  down length    area         model donor
#> 4 54095 54001     42 3722.68 RunModel_GR4J 54095
#> 5 54002 54057     43 2207.95 RunModel_GR4J 54002
#> 3 54001 54032     45 4329.90      Ungauged 54032
#> 6 54029 54032     32 1483.65      Ungauged 54032
#> 2 54032 54057     15 6864.88 RunModel_GR4J 54032
#> 1 54057  <NA>     NA 9885.46 RunModel_GR4J 54057

It should be noted that the GRiwrm object includes a column which automatically define the first gauged station at downstream for each Ungauged node. It is also possible to manually define the donor node of an Ungauged node, which may be upstream or in a parallel sub-basin. Type ?CreateGRiwrm for more details.

On the following network scheme, the Ungauged nodes are clearer than gauged ones with the same color (blue for upstream nodes and green for intermediate and downstream nodes)

plot(griwrmV05)

Generation of the GRiwrmInputsModel object

The formatting of the input data is described in the vignette “V01_Structure_SD_model”. The following code chunk resumes this formatting procedure:

BasinsObs <- Severn$BasinsObs
DatesR <- BasinsObs[[1]]$DatesR
PrecipTot <- cbind(sapply(BasinsObs, function(x) {x$precipitation}))
PotEvapTot <- cbind(sapply(BasinsObs, function(x) {x$peti}))
Precip <- ConvertMeteoSD(griwrmV05, PrecipTot)
PotEvap <- ConvertMeteoSD(griwrmV05, PotEvapTot)

Then, the GRiwrmInputsModel object can be generated taking into account the new GRiwrm object:

IM_U <- CreateInputsModel(griwrmV05, DatesR, Precip, PotEvap)
#> CreateInputsModel.GRiwrm: Processing sub-basin 54095...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54002...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54001...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54029...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54032...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54057...

Calibration of the model integrating ungauged nodes

Calibration options is detailed in vignette “V02_Calibration_SD_model”. We also apply a parameter regularization here but only where an upstream simulated catchment is available.

The following code chunk resumes this procedure:

IndPeriod_Run <- seq(
  which(DatesR == (DatesR[1] + 365*24*60*60)), # Set aside warm-up period
  length(DatesR) # Until the end of the time series
)
IndPeriod_WarmUp = seq(1,IndPeriod_Run[1]-1)
RunOptions <- CreateRunOptions(IM_U,
                               IndPeriod_WarmUp = IndPeriod_WarmUp,
                               IndPeriod_Run = IndPeriod_Run)
Qobs <- cbind(sapply(BasinsObs, function(x) {x$discharge_spec}))
InputsCrit <- CreateInputsCrit(IM_U,
                               FUN_CRIT = ErrorCrit_KGE2,
                               RunOptions = RunOptions, Obs = Qobs[IndPeriod_Run,],
                               AprioriIds = c("54057" = "54032", "54032" = "54095"),
                               transfo = "sqrt", k = 0.15
)
CalibOptions <- CreateCalibOptions(IM_U)

The airGR calibration process is applied on each hydrological node of the GRiwrm network from upstream nodes to downstream nodes but this time the calibration of the sub-basin 54032 invokes a semi-distributed model composed of the nodes 54029, 54001 and 54032 sharing the same parameters.

OC_U <- suppressWarnings(
  Calibration(IM_U, RunOptions, InputsCrit, CalibOptions))
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54095'...
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#>   Screening completed (81 runs)
#>       Param =  247.151,   -0.020,   83.096,    2.384
#>       Crit. KGE2[sqrt(Q)] = 0.9507
#> Steepest-descent local search in progress
#>   Calibration completed (37 iterations, 377 runs)
#>       Param =  305.633,    0.061,   48.777,    2.733
#>       Crit. KGE2[sqrt(Q)] = 0.9578
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54002'...
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#>   Screening completed (81 runs)
#>       Param =  432.681,   -0.020,   20.697,    1.944
#>       Crit. KGE2[sqrt(Q)] = 0.9264
#> Steepest-descent local search in progress
#>   Calibration completed (18 iterations, 209 runs)
#>       Param =  389.753,    0.085,   17.870,    2.098
#>       Crit. KGE2[sqrt(Q)] = 0.9370
#> Calibration.GRiwrmInputsModel: Processing sub-basins '54001', '54029', '54032' with '54032' as gauged donor...
#> Parameter regularization: get a priori parameters from node 54095: 1, 305.633, 0.061, 48.777, 1.871
#> Crit. KGE2[sqrt(Q)] = 0.9578
#>  SubCrit. KGE2[sqrt(Q)] cor(sim, obs, "pearson") = 0.9579 
#>  SubCrit. KGE2[sqrt(Q)] cv(sim)/cv(obs)          = 1.0023 
#>  SubCrit. KGE2[sqrt(Q)] mean(sim)/mean(obs)      = 1.0007 
#> 
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#>   Screening completed (243 runs)
#>       Param =    1.250,  432.681,   -0.649,   20.697,    1.944
#>       Crit. Composite    = 0.9624
#> Steepest-descent local search in progress
#>   Calibration completed (23 iterations, 451 runs)
#>       Param =    1.125,  386.196,   -0.611,   31.536,    1.803
#>       Crit. Composite    = 0.9650
#>  Formula: sum(0.86 * KGE2[sqrt(Q)], 0.14 * GAPX[ParamT])
#> Tranferring parameters from node '54032' to node '54001'
#>       Param =    1.125,  386.196,   -0.611,   31.536,    1.529
#> 
#> Tranferring parameters from node '54032' to node '54029'
#>       Param =  386.196,   -0.611,   31.536,    1.999
#> 
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54057'...
#> Parameter regularization: get a priori parameters from node 54032: 1.125, 386.196, -0.611, 31.536, 1.669
#> Crit. KGE2[sqrt(Q)] = 0.9660
#>  SubCrit. KGE2[sqrt(Q)] cor(sim, obs, "pearson") = 0.9664 
#>  SubCrit. KGE2[sqrt(Q)] cv(sim)/cv(obs)          = 1.0013 
#>  SubCrit. KGE2[sqrt(Q)] mean(sim)/mean(obs)      = 1.0050 
#> 
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#>   Screening completed (243 runs)
#>       Param =    1.250,  432.681,   -0.649,   42.098,    1.944
#>       Crit. Composite    = 0.9609
#> Steepest-descent local search in progress
#>   Calibration completed (23 iterations, 450 runs)
#>       Param =    1.120,  383.753,   -0.613,   31.500,    1.671
#>       Crit. Composite    = 0.9647
#>  Formula: sum(0.85 * KGE2[sqrt(Q)], 0.15 * GAPX[ParamT])

Hydrological parameters for sub-basins

Run the model with the optimized model parameters

The hydrological model uses parameters inherited from the calibration of the gauged sub-basin 54032 for the Ungauged nodes 54001 and 54029:

ParamV05 <- sapply(griwrmV05$id, function(x) {OC_U[[x]]$Param})
dfParam <- do.call(
  rbind,
  lapply(ParamV05, function(x)
    if (length(x)==4) {return(c(NA, x))} else return(x))
)
colnames(dfParam) <- c("velocity", paste0("X", 1:4))
knitr::kable(round(dfParam, 3))
velocity X1 X2 X3 X4
54095 NA 305.633 0.061 48.777 2.733
54002 NA 389.753 0.085 17.870 2.098
54001 1.125 386.196 -0.611 31.536 1.529
54029 NA 386.196 -0.611 31.536 1.999
54032 1.125 386.196 -0.611 31.536 1.803
54057 1.120 383.753 -0.613 31.500 1.671

We can run the model with these calibrated parameters:

OutputsModels <- RunModel(
  IM_U,
  RunOptions = RunOptions,
  Param = ParamV05
)
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54095...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54002...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54001...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54029...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54032...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54057...

and plot the comparison of the modeled and the observed flows including the so-called Ungauged stations :

plot(OutputsModels, Qobs = Qobs[IndPeriod_Run,], which = c("Regime", "CumFreq"))

References

Lobligeois, F., V. Andréassian, C. Perrin, P. Tabary, and C. Loumagne. 2014. “When Does Higher Spatial Resolution Rainfall Information Improve Streamflow Simulation? An Evaluation Using 3620 Flood Events.” Hydrology and Earth System Sciences 18 (2): 575–94. https://doi.org/10.5194/hess-18-575-2014.
Lobligeois, Florent. 2014. Mieux connaître la distribution spatiale des pluies améliore-t-il la modélisation des crues ? Diagnostic sur 181 bassins versants français.” PhD thesis, AgroParisTech. https://pastel.hal.science/tel-01134990/document.