<!DOCTYPE html>

aa-partie-exploration-des-donnees

aa-partie-exploration-des-donnees

This vignette explores the tables in the database and ensures that R has access to the tables. It also transforms the data in json.

library(diades.atlas)
# renv::install("dm")
# library(dm)
library(dplyr)
library(leaflet)
library(ggplot2)

Data exploration

Connect to database

Do not forget to set environment variables in .Renviron

postgis_host <- Sys.getenv("POSTGRES_HOST")
postgis_user <- Sys.getenv("POSTGRES_USER")
postgis_password <- Sys.getenv("POSTGRES_PASSWORD")

con <- DBI::dbConnect(
  RPostgres::Postgres(),
  host = Sys.getenv("POSTGRES_HOST", diades.atlas:::get_golem_config("POSTGRES_HOST")),
  dbname = Sys.getenv("POSTGRES_DBNAME", diades.atlas:::get_golem_config("POSTGRES_DBNAME")),
  port = Sys.getenv("POSTGRES_PORT", diades.atlas:::get_golem_config("POSTGRES_PORT")),
  user = Sys.getenv("POSTGRES_USER", "diadesatlas_r"),
  password = Sys.getenv("POSTGRES_PASS", "diadesPassword"),
  options = "-c search_path=diadesatlas"
)
# Listtables
# DBI::dbListTables(con)
# DBI::dbListObjects(con)

# Get the names of all the tables in the schema
all_schemas <- DBI::dbGetQuery(con, "SELECT table_name FROM information_schema.tables WHERE table_schema='diadesatlas'")
all_schemas
#>                  table_name
#> 1           outlet_distance
#> 2           hydiadparameter
#> 3            basin_location
#> 4           ices_rectangle2
#> 5             ices_division
#> 6                     cices
#> 7                 abundance
#> 8               v_abundance
#> 9                 dbversion
#> 10                   v_iucn
#> 11          abundance_level
#> 12      v_hybrid_model_mavg
#> 13   v_ecosystemic_services
#> 14              v_occurence
#> 15                  v_basin
#> 16 v_species_ices_occurence
#> 17           v_hybrid_model
#> 18             species_iucn
#> 19                ices_area
#> 20           ices_rectangle
#> 21      iucn_classification
#> 22               iucn_level
#> 23         species_division
#> 24        species_rectangle
#> 25              v_ices_geom
#> 26                  esvalue
#> 27                   locale
#> 28      hybrid_model_result
#> 29                casestudy
#> 30     ecosystemic_services
#> 31                    basin
#> 32             basin_outlet
#> 33          casestudy_basin
#> 34           climatic_model
#> 35                  species
#> 36                 category
#> 37              subcategory
#> 38            v_maxvalue_es
#> 39                lang85_85
#> 40               ices_grass

# Display the head of all
for (i in all_schemas$table_name) {
  print(dplyr::tbl(con, dbplyr::in_schema("diadesatlas", i)))
}
#> # Source:   table<"diadesatlas"."outlet_distance"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    departure arrival distance
#>        <int>   <int>    <dbl>
#>  1         1       1       0 
#>  2         1       3    1279.
#>  3         1     387    2458.
#>  4         1     358    2015.
#>  5         1     359    1382.
#>  6         1     290    1491.
#>  7         1      14     662.
#>  8         1      15     173.
#>  9         1      16     965.
#> 10         1     385    2259.
#> # … with more rows
#> # Source:   table<"diadesatlas"."hydiadparameter"> [?? x 16]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    species_id   Dmax   lambda     r AgeFirstMat nbCohorts  gamma DistMean     alpha  beta   Mdisp DistMax withAllee
#>         <int>  <dbl>    <dbl> <dbl>       <dbl>     <int>  <dbl>    <dbl>     <dbl> <dbl>   <dbl>   <dbl> <lgl>    
#>  1          6  7.11  0.0931     1.3         5           3 0.173     40.5  0.444     0.417 1.90e-2   256.  TRUE     
#>  2          8  4.07  0.442      1.3         3           3 0.145     24.0  0.549     0.418 3.69e-2   151.  TRUE     
#>  3         18  0.714 0.193      1.3         5           3 0.366     10    0.216     0.706 3.81e-2    41.2 TRUE     
#>  4         21  1.17  0.136      1.3         8           3 0.628     83.2  0.0180    0.869 4.88e-3   300.  TRUE     
#>  5         25  0.496 0.270      1.3         3           3 0.0605    20.5  0.380     0.496 3.57e-2   111.  TRUE     
#>  6         26 11.5   0.00851    1.3         3.5         3 0.0828    25.4  0.0376    0.931 2.92e-2    88.0 TRUE     
#>  7          4  0.106 0.0472     1.3        11           3 0.0865   464.   0.000110  1.35  4.28e-4  1323.  TRUE     
#>  8         20 46.2   0.00143    1.3         2           3 0.109      2.42 0.904     0.556 3.98e-1    11.9 TRUE     
#>  9         13 35.9   0          1.3        12           3 0.253    170.   0.0000204 1.85  4.67e-3   413.  TRUE     
#> 10         19 50.3   0.000432   1.3         3.5         3 0.210     39.8  0.000301  1.84  8.32e-3   100   TRUE     
#> # … with more rows, and 3 more variables: withNatalStray <lgl>, usePresence <lgl>, Sdisp <dbl>
#> # Source:   table<"diadesatlas"."basin_location"> [?? x 6]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    basin_id basin_name    surface_area basin_geom                basin_geom_simplified          outlet_geom     
#>       <dbl> <chr>                <dbl> <pq_gmtry>                <pq_gmtry>                     <pq_gmtry>      
#>  1        1 Aa                   1287. 0106000020E6100000010000… 0103000020E610000001000000670… 0101000020E6100…
#>  2        2 Adige               12417. 0106000020E6100000010000… 0103000020E610000001000000440… 0101000020E6100…
#>  3        5 Aksu                18175. 0106000020E6100000020000… 0103000020E6100000010000006D0… 0101000020E6100…
#>  4        8 Angermanalven       31815. 0106000020E6100000080000… 0103000020E610000001000000710… 0101000020E6100…
#>  5       11 Asi                 57018. 0106000020E6100000010000… 0103000020E610000001000000AB0… 0101000020E6100…
#>  6       18 Axios_Vardar        24397. 0106000020E6100000040000… 0103000020E610000001000000080… 0101000020E6100…
#>  7      303 Arachthos            2441. 0106000020E6100000010000… 0103000020E610000001000000AD0… 0101000020E6100…
#>  8      306 Evrotas              1770. 0106000020E6100000010000… 0103000020E610000001000000700… 0101000020E6100…
#>  9      366 Oka                   143. 0106000020E6100000010000… 0103000020E6100000010000001C0… 0101000020E6100…
#> 10       44 Don                429400. 0106000020E6100000020000… 0103000020E610000001000000E70… 0101000020E6100…
#> # … with more rows
#> # Source:   table<"diadesatlas"."ices_rectangle2"> [?? x 5]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    ices_type   gid icesname geom                                    exterior_geom                               
#>    <chr>     <int> <chr>    <pq_gmtry>                              <pq_gmtry>                                  
#>  1 rectangle  1846 01D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  2 rectangle  1847 02D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  3 rectangle  1848 03D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  4 rectangle  1849 04D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  5 rectangle  1850 05D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  6 rectangle  1851 06D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  7 rectangle  1852 07D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  8 rectangle  1853 08D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#>  9 rectangle  1854 09D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#> 10 rectangle  1855 10D2     0106000020E610000001000000010300000001… 0103000020E610000001000000050000001092FFFFF…
#> # … with more rows
#> # Source:   table<"diadesatlas"."ices_division"> [?? x 5]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    ices_type   gid icesname simplified_geom                             exterior_geom                           
#>    <chr>     <int> <chr>    <pq_gmtry>                                  <pq_gmtry>                              
#>  1 division     72 27.3.a   0103000020E610000052040000A8220000146DB504… 0103000020E610000001000000A8220000146DB…
#>  2 division     10 27.4.a   0106000020E6100000030000000103000000800A00… 0103000020E6100000010000001C30000075308…
#>  3 division      8 27.4.b   0103000020E610000068000000DA160000948116A9… 0103000020E610000001000000DA16000094811…
#>  4 division      7 27.4.c   0103000020E61000006A00000055100000473D2BA7… 0103000020E61000000100000055100000473D2…
#>  5 division     27 27.6.a   0103000020E61000009C0200000B240000F7260400… 0103000020E6100000010000000B240000F7260…
#>  6 division     78 27.6.b   0103000020E610000002000000050000002BD00000… 0103000020E610000001000000050000002BD00…
#>  7 division     48 27.7.a   0106000020E6100000040000000103000000010000… 0103000020E6100000010000007D6300008C7B6…
#>  8 division     42 27.7.b   0103000020E61000000F01000081130000A17EB9EA… 0103000020E61000000100000081130000A17EB…
#>  9 division     79 27.7.c   0103000020E610000001000000050000002BD00000… 0103000020E610000001000000050000002BD00…
#> 10 division     47 27.7.d   0106000020E6100000020000000103000000150000… 0103000020E61000000100000034070000FCF03…
#> # … with more rows
#> # Source:   table<"diadesatlas"."cices"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    cices_id mea                   cices                                           expert_knowledge              
#>       <int> <chr>                 <chr>                                           <chr>                         
#>  1        1 Provisioning services "Biomass (wild animals and their outputs)"      Food provision                
#>  2        2 Provisioning services "Biomass (wild animals and their outputs)"      Option value (Leather provisi…
#>  3        3 Provisioning services "Biomass (wild animals and their outputs)"      Option value (Molecule provis…
#>  4        4 Cultural services     "Physical and experiential interactions with n… Recreation sport fishing      
#>  5        5 Cultural services     "Physical and experiential interactions with n… Sport fishing competitions    
#>  6        6 Cultural services     "Physical and experiential interactions with n… Option value (fishing competi…
#>  7        7 Cultural services     "Spiritual, symbolic, and other interactions w… Spiritual experience (includi…
#>  8        8 Cultural services     "Intellectual and representative interactions … Gastronomy around species and…
#>  9        9 Cultural services     "Intellectual and representative interactions … Gastronomic festival or events
#> 10       10 Cultural services     "Intellectual and representative interactions … Art and folklore              
#> # … with more rows
#> # Source:   table<"diadesatlas"."abundance"> [?? x 14]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    basin_id abundance_id presence_absence year_from year_to period_comment abundance_migrator… abundance_reside…
#>       <int>        <int>            <int>     <int>   <int> <chr>          <chr>               <chr>            
#>  1        1            1                0      1951    2010 2000           <NA>                <NA>             
#>  2        1            2                0      1851    1950 1900           <NA>                <NA>             
#>  3        3            5                0      1951    2010 2000           <NA>                <NA>             
#>  4        3            6                0      1851    1950 1900           <NA>                <NA>             
#>  5       14           29                0      1951    2010 2000           <NA>                <NA>             
#>  6       14           30                0      1851    1950 1900           <NA>                <NA>             
#>  7       15           31                0      1951    2010 2000           <NA>                <NA>             
#>  8       15           32                0      1851    1950 1900           <NA>                <NA>             
#>  9       16           33                0      1951    2010 2000           <NA>                <NA>             
#> 10       16           34                0      1851    1950 1900           <NA>                <NA>             
#> # … with more rows, and 6 more variables: bibliography <chr>, ecoregion_code <int>, ecoregion_name <chr>,
#> #   abundance_migratory_id <int>, abundance_resident_id <int>, species_id <int>
#> # Source:   table<"diadesatlas"."v_abundance"> [?? x 13]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    basin_id abundance_id abundance_level_id species_id year_from year_to basin_name latin_name        simplified_name
#>       <int>        <int>              <int>      <int>     <int>   <int> <chr>      <chr>             <chr>          
#>  1      179        26667                  3          8      2011      NA Vire       Alosa fallax      A. fallax      
#>  2      188        26668                  1          8      2011      NA Yser       Alosa fallax      A. fallax      
#>  3       69        25726                  1          4      2011      NA Gudenaa    Acipenser sturio  A. sturio      
#>  4      174        25727                  1          4      2011      NA Vida       Acipenser sturio  A. sturio      
#>  5       69        25730                  1          6      2011      NA Gudenaa    Alosa alosa       A. alosa       
#>  6      174        25731                  1          6      2011      NA Vida       Alosa alosa       A. alosa       
#>  7       69        25734                  2          8      2011      NA Gudenaa    Alosa fallax      A. fallax      
#>  8      174        25735                 NA          8      2011      NA Vida       Alosa fallax      A. fallax      
#>  9       69        25744                  3         13      2011      NA Gudenaa    Anguilla anguilla A. anguilla    
#> 10      174        25745                  3         13      2011      NA Vida       Anguilla anguilla A. anguilla    
#> # … with more rows, and 4 more variables: fish_name <chr>, abundance_level_name <chr>,
#> #   abundance_level_interpretation <chr>, abundance_level_interpretation_short <chr>
#> # Source:   table<"diadesatlas"."dbversion"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   dbversion_id dbversion_number dbversion_date     
#>          <int> <chr>            <dttm>             
#> 1            1 1.0.0            2022-05-16 00:00:00
#> 2            2 1.0.1            2022-06-09 17:56:44
#> 3            3 1.0.2            2023-02-07 15:08:54
#> # Source:   table<"diadesatlas"."v_iucn"> [?? x 7]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    species_id latin_name           simplified_name english_name iucn_classifica… iucn_level_code iucn_level_name
#>         <int> <chr>                <chr>           <chr>        <chr>            <chr>           <chr>          
#>  1          6 Alosa alosa          A. alosa        Allis shad   IUCN_Europe      LC              Least Concern  
#>  2         22 Platichthys flesus   P. flesus       European fl… IUCN_Europe      LC              Least Concern  
#>  3          8 Alosa fallax         A. fallax       Twaite shad  IUCN_Europe      LC              Least Concern  
#>  4         13 Anguilla anguilla    A. anguilla     European eel IUCN_Europe      CR              Critically End…
#>  5         18 Lampetra fluviatilis L. fluviatilis  River lampr… IUCN_Europe      LC              Least Concern  
#>  6         21 Petromyzon marinus   P. marinus      Sea lamprey  IUCN_Europe      LC              Least Concern  
#>  7         25 Salmo salar          S. salar        Atlantic sa… IUCN_Europe      LC              Least Concern  
#>  8         26 Salmo trutta         S. trutta       Sea trout    IUCN_Europe      LC              Least Concern  
#>  9         20 Osmerus eperlanus    O. eperlanus    European sm… IUCN_Europe      LC              Least Concern  
#> 10         19 Chelon ramada        C. ramada       Thinlip gre… IUCN_Europe      LC              Least Concern  
#> # … with more rows
#> # Source:   table<"diadesatlas"."abundance_level"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   abundance_level_id abundance_level_name abundance_level_interpretation                 abundance_level_interp…
#>                <int> <chr>                <chr>                                          <chr>                  
#> 1                  1 absent               The species was never recorded in the catchme… Not recorded in the pe…
#> 2                  2 rare                 Occasional vagrants were recorded in the catc… Occasional vagrants    
#> 3                  3 common               Functional populations were present in the ca… Functional populations 
#> 4                  4 abundant             Functional populations were present in and nu… Abundant functional po…
#> # Source:   table<"diadesatlas"."v_hybrid_model_mavg"> [?? x 14]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    latin_name    basin_name climatic_scenar… species_id basin_id  year nit_min nit_mean nit_max hsi_min hsi_mean
#>    <chr>         <chr>      <chr>                 <int>    <int> <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>
#>  1 Acipenser st… Aa         rcp45                     4        1  1951    8.71    15.2    27.5   0.0677   0.118 
#>  2 Acipenser st… Aa         rcp45                     4        1  1952    9.48    11.4    14.9   0.0737   0.0889
#>  3 Acipenser st… Aa         rcp45                     4        1  1953   13.2     14.1    14.9   0.103    0.110 
#>  4 Acipenser st… Aa         rcp45                     4        1  1954   12.3     13.9    15.6   0.0958   0.108 
#>  5 Acipenser st… Aa         rcp45                     4        1  1955    8.12    17.4    27.5   0.0631   0.135 
#>  6 Acipenser st… Aa         rcp45                     4        1  1956    8.75    11.2    15.7   0.0680   0.0869
#>  7 Acipenser st… Aa         rcp45                     4        1  1957    8.75    13.1    17.3   0.0680   0.102 
#>  8 Acipenser st… Aa         rcp45                     4        1  1958    9.10    10.6    13.3   0.0707   0.0826
#>  9 Acipenser st… Aa         rcp45                     4        1  1959    4.52     7.57    9.10  0.0352   0.0589
#> 10 Acipenser st… Aa         rcp45                     4        1  1960    9.93    15.5    20.5   0.0772   0.120 
#> # … with more rows, and 3 more variables: hsi_max <dbl>, nit_movingavg <dbl>, hsi_movingavg <dbl>
#> # Source:   table<"diadesatlas"."v_ecosystemic_services"> [?? x 14]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    category_id casestudy_id species_id subcategory_id esvalue_id subcategory_name      category_name  latin_name
#>          <int>        <int>      <int>          <int>      <int> <chr>                 <chr>          <chr>     
#>  1           2            9         21             99          0 ALL EXISTING SUBCATE… Provisionning… Petromyzo…
#>  2           1            9         19             99          0 ALL EXISTING SUBCATE… Cultural serv… Chelon ra…
#>  3           3            5         20              3         -1 Redistribution of nu… Regulating se… Osmerus e…
#>  4           1            4          4              7          0 Natural heritage and… Cultural serv… Acipenser…
#>  5           2            7         20              1          0 Food provision from … Provisionning… Osmerus e…
#>  6           1            9          6             99          1 ALL EXISTING SUBCATE… Cultural serv… Alosa alo…
#>  7           1            1         19              8          2 Recreation sport fis… Cultural serv… Chelon ra…
#>  8           2            3          4             99          0 ALL EXISTING SUBCATE… Provisionning… Acipenser…
#>  9           2            5         26              2         -1 Option value associa… Provisionning… Salmo tru…
#> 10           2            8         20             99          0 ALL EXISTING SUBCATE… Provisionning… Osmerus e…
#> # … with more rows, and 6 more variables: simplified_name <chr>, fish_name <chr>, casestudy_name <chr>,
#> #   esvalue_code <chr>, esvalue_name <chr>, sortorder <int>
#> # Source:   table<"diadesatlas"."v_occurence"> [?? x 8]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    ices_type species_id   gid fish_name           latin_name         simplified_name icesname nb_occurence
#>    <chr>          <int> <int> <chr>               <chr>              <chr>           <chr>         <int64>
#>  1 rectangle          8  3329 Twaite shad         Alosa fallax       A. fallax       28E8                7
#>  2 rectangle          6  2629 Allis shad          Alosa alosa        A. alosa        11E0               15
#>  3 rectangle         22  3003 European flounder   Platichthys flesus P. flesus       37E4                3
#>  4 rectangle         26  4135 Sea trout           Salmo trutta       S. trutta       38F8                1
#>  5 division           6    44 Allis shad          Alosa alosa        A. alosa        27.7.g             12
#>  6 division          13    47 European eel        Anguilla anguilla  A. anguilla     27.7.d             15
#>  7 rectangle         25  3656 Atlantic salmon     Salmo salar        S. salar        39F2                1
#>  8 rectangle         13  3081 European eel        Anguilla anguilla  A. anguilla     29E5                2
#>  9 rectangle         19  3076 Thinlip grey mullet Chelon ramada      C. ramada       24E5                5
#> 10 rectangle         20  2158 European smelt      Osmerus eperlanus  O. eperlanus    30D5                1
#> # … with more rows
#> # Source:   table<"diadesatlas"."v_basin"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    basin_name basin_id geom                                                                                     
#>    <chr>         <int> <pq_gmtry>                                                                               
#>  1 Aa                1 0103000020E61000000100000067000000B952D9131D8801401BBC172A2B5649408D0C014E4885014000E325…
#>  2 Adour             3 0103000020E610000001000000640100003233CE8E170AE0BF1F91FFE9FC694540E2EB095DA9D0E0BFBCE4A2…
#>  3 Alcoa           387 0103000020E61000000100000033000000ED59C15EDBBB21C0C7B0A13118C64340364D1B3C77BB21C0D8934B…
#>  4 Anllons         358 0103000020E6100000010000004E000000B693D402240F21C0C2A361BB369A454051BC20BAD90B21C0EEAAAB…
#>  5 Artibai         359 0103000020E6100000010000001A00000050DD05F9C08103C02E478DC051A045400788A472099703C08C6A78…
#>  6 Ason            290 0103000020E61000000100000038000000315B7B490DE20BC0E120DA39AE92454050BEFE9623160CC0FCD576…
#>  7 Aulne            14 0103000020E6100000010000005D000000D85741AAE4E60BC00A3519C6FB1A48409BF318828CDD0BC008C323…
#>  8 Authie           15 0103000020E6100000010000007C000000234C696EBAA7044062A2A7E6470C49405AFD67A2D9810440EE7E4C…
#>  9 Auzance          16 0103000020E61000000100000034000000F6C13D5D7E32F8BF28CAD72761454740E79CF4DA6972F8BFC84B2D…
#> 10 Ave             385 0103000020E6100000010000006B0000009EE0BE53973420C09E8644EE81C544404F8DBB263F2F20C06C85FA…
#> # … with more rows
#> # Source:   table<"diadesatlas"."v_species_ices_occurence"> [?? x 8]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    ices_type   gid species_id fish_name         icesname latin_name           simplified_name nb_occurence
#>    <chr>     <int>      <int> <chr>             <chr>    <chr>                <chr>                <int64>
#>  1 rectangle  3159          4 European sturgeon 22E6     Acipenser sturio     A. sturio                  0
#>  2 rectangle  3159          6 Allis shad        22E6     Alosa alosa          A. alosa                   5
#>  3 rectangle  3159          8 Twaite shad       22E6     Alosa fallax         A. fallax                  1
#>  4 rectangle  3159         13 European eel      22E6     Anguilla anguilla    A. anguilla                0
#>  5 rectangle  3159         18 River lamprey     22E6     Lampetra fluviatilis L. fluviatilis             0
#>  6 rectangle  3159         20 European smelt    22E6     Osmerus eperlanus    O. eperlanus               0
#>  7 rectangle  3159         21 Sea lamprey       22E6     Petromyzon marinus   P. marinus                 0
#>  8 rectangle  3159         22 European flounder 22E6     Platichthys flesus   P. flesus                  0
#>  9 rectangle  3159         25 Atlantic salmon   22E6     Salmo salar          S. salar                   0
#> 10 rectangle  3159         26 Sea trout         22E6     Salmo trutta         S. trutta                  0
#> # … with more rows
#> # Source:   table<"diadesatlas"."v_hybrid_model"> [?? x 17]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    hybrid_model_result_id basin_id species_id climatic_model_id  year   nit    hsi saturation_rate climatic_scenar…
#>                     <int>    <int>      <int>             <int> <int> <dbl>  <dbl>           <dbl> <chr>           
#>  1                      3        1          6                 2  1951 1176. 0.244            0.558 rcp45           
#>  2                      4        1          6                 2  1952 1144. 0.322            0.411 rcp45           
#>  3                      5        1          6                 2  1953 1120. 0.195            0.666 rcp45           
#>  4                      6        1          6                 2  1954 1097. 0.246            0.517 rcp45           
#>  5                      7        1          6                 2  1955  734. 0.0850           1     rcp45           
#>  6                      8        1          6                 2  1956  998. 0.235            0.491 rcp45           
#>  7                      9        1          6                 2  1957  949. 0.327            0.336 rcp45           
#>  8                     10        1          6                 2  1958  912. 0.415            0.254 rcp45           
#>  9                     11        1          6                 2  1959  724. 0.246            0.342 rcp45           
#> 10                     12        1          6                 2  1960  670. 0.380            0.204 rcp45           
#> # … with more rows, and 8 more variables: climatic_model_code <chr>, oceanic_model <chr>,
#> #   atmospheric_model <chr>, climatic_model_hm <chr>, basin_name <chr>, fish_name <chr>, latin_name <chr>,
#> #   simplified_name <chr>
#> # Source:   table<"diadesatlas"."species_iucn"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    species_iucn_id species_id iucn_classification_id iucn_level_id
#>              <int>      <int>                  <int>         <int>
#>  1               1          4                      1             4
#>  2               2         13                      1             4
#>  3               3         18                      1             8
#>  4               4         21                      1             8
#>  5               5         25                      1             8
#>  6               6         26                      1             8
#>  7               7         20                      1             8
#>  8               8         19                      1             8
#>  9               9          6                      1             8
#> 10              10         22                      1             8
#> # … with more rows
#> # Source:   table<"diadesatlas"."ices_area"> [?? x 11]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>      gid major_fa subarea division subdivisio unit  area_full area_27 area_km2 geom         simplified_geom     
#>    <int> <chr>    <chr>   <chr>    <chr>      <chr> <chr>     <chr>      <dbl> <pq_gmtry>   <pq_gmtry>          
#>  1    83 27       8       e        <NA>       <NA>  27.8.e    8.e          NA  01030000201… 0103000020E61000000…
#>  2    10 27       4       a        <NA>       <NA>  27.4.a    4.a      267336. 01060000201… 0106000020E61000000…
#>  3     7 27       4       c        <NA>       <NA>  27.4.c    4.c       63634. 01060000201… 0103000020E61000006…
#>  4    72 27       3       a        <NA>       <NA>  27.3.a    3.a          NA  01030000201… 0103000020E61000005…
#>  5    27 27       6       a        <NA>       <NA>  27.6.a    6.a      236759. 01060000201… 0103000020E61000009…
#>  6     8 27       4       b        <NA>       <NA>  27.4.b    4.b      280957. 01060000201… 0103000020E61000006…
#>  7    84 27       9       b        <NA>       <NA>  27.9.b    9.b          NA  01030000201… 0103000020E61000000…
#>  8    82 27       8       d        <NA>       <NA>  27.8.d    8.d          NA  01030000201… 0103000020E61000000…
#>  9    36 27       9       a        <NA>       <NA>  27.9.a    9.a      167855. 01060000201… 0106000020E61000000…
#> 10    78 27       6       b        <NA>       <NA>  27.6.b    6.b          NA  01030000201… 0103000020E61000000…
#> # … with more rows
#> # Source:   table<"diadesatlas"."ices_rectangle"> [?? x 15]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>      gid    id icesname south  west north  east area_km2 objectid ecoregion           area percentage shape_star
#>    <int> <dbl> <chr>    <dbl> <dbl> <dbl> <dbl>    <int>  <int64> <chr>              <dbl>      <dbl>      <dbl>
#>  1  1846  2549 01D2      36     -18  36.5   -17     4987       30 Oceanic Northeast…   0.5        100      0.500
#>  2  1847  2550 02D2      36.5   -18  37     -17     4955      121 Oceanic Northeast…   0.5        100      0.500
#>  3  1848  2551 03D2      37     -18  37.5   -17     4923      209 Oceanic Northeast…   0.5        100      0.500
#>  4  1849  2552 04D2      37.5   -18  38     -17     4891      296 Oceanic Northeast…   0.5        100      0.500
#>  5  1850  2553 05D2      38     -18  38.5   -17     4858      385 Oceanic Northeast…   0.5        100      0.500
#>  6  1851  2554 06D2      38.5   -18  39     -17     4825      463 Oceanic Northeast…   0.5        100      0.500
#>  7  1852  2555 07D2      39     -18  39.5   -17     4792      538 Oceanic Northeast…   0.5        100      0.500
#>  8  1853  2556 08D2      39.5   -18  40     -17     4758      624 Oceanic Northeast…   0.5        100      0.500
#>  9  1854  2557 09D2      40     -18  40.5   -17     4724      715 Oceanic Northeast…   0.5        100      0.500
#> 10  1855  2558 10D2      40.5   -18  41     -17     4689      806 Oceanic Northeast…   0.5        100      0.500
#> # … with more rows, and 2 more variables: shape_stle <dbl>, geom <pq_gmtry>
#> # Source:   table<"diadesatlas"."iucn_classification"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   iucn_classification_id iucn_classification_code bibliography                                                  
#>                    <int> <chr>                    <chr>                                                         
#> 1                      3 IUCN_FR                  UICN Comité français, MNHN, SFI & AFB. (2019) La Liste rouge …
#> 2                      4 IUCN_IE                  King, J.L., F. Marnell, N. Kingston, R. Rosell, P. Boylan, J.…
#> 3                      2 IUCN_ES                  www.uicn.es/web/pdf/Tablas_especies_informe_RedList_Spain.xlsx
#> 4                      1 IUCN_Europe              Brooks, Emma. European Red List of Freshwater Fishes. Luxembo…
#> 5                      6 IUCN_UK                  https://hub.jncc.gov.uk/assets/478f7160-967b-4366-acdf-8941fd…
#> 6                      5 IUCN_PT                  Cabral, M.J. (coord), Almeida, J., Almeida, P.R., Dellinger T…
#> # Source:   table<"diadesatlas"."iucn_level"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    iucn_level_id iucn_level_code iucn_level_name      
#>            <int> <chr>           <chr>                
#>  1             1 EX              Extinct              
#>  2             2 EW              Extinct in the Wild  
#>  3             3 RE              Regionally Extinct   
#>  4             4 CR              Critically Endangered
#>  5             5 EN              Endangered           
#>  6             6 VU              Vulnerable           
#>  7             7 NT              Near Threatened      
#>  8             8 LC              Least Concern        
#>  9             9 DD              Data Deficient       
#> 10            10 NE              Not Evaluated        
#> # Source:   table<"diadesatlas"."species_division"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    species_division_id  year species_id   gid
#>                  <int> <int>      <int> <int>
#>  1                   1  2013          4    37
#>  2                   2  2015          4    47
#>  3                   3  2015          4    40
#>  4                   4  2016          4    40
#>  5                   5  2016          4    39
#>  6                   6  2016          4    47
#>  7                   7  2017          4    39
#>  8                   8  2003          6     7
#>  9                   9  2003          6    40
#> 10                  10  2003          6    39
#> # … with more rows
#> # Source:   table<"diadesatlas"."species_rectangle"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    species_rectangle_id  year species_id   gid
#>                   <int> <int>      <int> <int>
#>  1                    1  2013          4  3234
#>  2                    2  2015          4  3324
#>  3                    3  2015          4  3565
#>  4                    4  2016          4  3323
#>  5                    5  2016          4  3324
#>  6                    6  2016          4  3485
#>  7                    7  2017          4  3323
#>  8                    8  2003          6  3323
#>  9                    9  2003          6  3324
#> 10                   10  2003          6  3160
#> # … with more rows
#> # Source:   table<"diadesatlas"."v_ices_geom"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    ices_type   gid icesname geom                                                                                
#>    <chr>     <int> <chr>    <pq_gmtry>                                                                          
#>  1 rectangle  3159 22E6     0106000020E6100000010000000103000000010000000500000080FFFFFFFFFF0FC02892FFFFFF3F474…
#>  2 rectangle  2247 21D6     0106000020E610000001000000010300000001000000050000006048FEFFFFFF2BC018C9FFFFFFFF464…
#>  3 rectangle  2256 30D6     0106000020E610000001000000010300000001000000050000006048FEFFFFFF2BC018C9FFFFFF3F494…
#>  4 rectangle  1966 27D3     0106000020E61000000100000001030000000100000005000000D06D0000000031C0E86D00000080484…
#>  5 rectangle  3177 44E6     0106000020E6100000010000000103000000010000000500000080FFFFFFFFFF0FC0D8A4000000C04C4…
#>  6 rectangle  4058 37F7     0106000020E610000001000000010300000001000000050000004022F9FFFFFF1B40F836000000004B4…
#>  7 rectangle  2258 32D6     0106000020E610000001000000010300000001000000050000006048FEFFFFFF2BC0385BFFFFFFBF494…
#>  8 rectangle  2727 12E1     0106000020E610000001000000010300000001000000050000002024FFFFFFFF21C018C9FFFFFFBF444…
#>  9 rectangle  3092 40E5     0106000020E61000000100000001030000000100000005000000C090FCFFFFFF13C02892FFFFFFBF4B4…
#> 10 rectangle  2052 19D4     0106000020E6100000010000000103000000010000000500000090490100000030C0F83600000080464…
#> # … with more rows
#> # Source:   table<"diadesatlas"."esvalue"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   esvalue_id esvalue_code esvalue_name
#>        <int> <chr>        <chr>       
#> 1         -1 ?            Unknown     
#> 2          0 0            Not present 
#> 3          1 €            Low value   
#> 4          2 €€           Median value
#> 5          3 €€€          High value  
#> # Source:   table<"diadesatlas"."locale"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    locale_id country_code english_label              country_label                        
#>        <int> <chr>        <chr>                      <chr>                                
#>  1        59 fr           ALL EXISTING SUBCATEGORIES TOUTES LES SOUS-CATEGORIES EXISTANTES
#>  2        60 fr           Allis shad                 Grande alose                         
#>  3        61 fr           Atlantic salmon            Saumon atlantique                    
#>  4        62 fr           Barrow                     Barrow                               
#>  5        63 fr           Couesnon                   Couesnon                             
#>  6        64 fr           Cultural services          Services culturels                   
#>  7        65 fr           Deba                       Deba                                 
#>  8        66 fr           Dordogne                   Dordogne                             
#>  9        67 fr           Dorset Frome               Dorset Frome                         
#> 10        68 fr           European eel               Anguille européenne                  
#> # … with more rows
#> # Source:   table<"diadesatlas"."hybrid_model_result"> [?? x 9]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    hybrid_model_result_id basin_id species_id climatic_model_id climatic_scenario  year   nit    hsi saturation_rate
#>                     <int>    <int>      <int>             <int> <chr>             <int> <dbl>  <dbl>           <dbl>
#>  1                      2        1          6                 2 rcp45                 0 1451. 0.168            1    
#>  2                      3        1          6                 2 rcp45              1951 1176. 0.244            0.558
#>  3                      4        1          6                 2 rcp45              1952 1144. 0.322            0.411
#>  4                      5        1          6                 2 rcp45              1953 1120. 0.195            0.666
#>  5                      6        1          6                 2 rcp45              1954 1097. 0.246            0.517
#>  6                      7        1          6                 2 rcp45              1955  734. 0.0850           1    
#>  7                      8        1          6                 2 rcp45              1956  998. 0.235            0.491
#>  8                      9        1          6                 2 rcp45              1957  949. 0.327            0.336
#>  9                     10        1          6                 2 rcp45              1958  912. 0.415            0.254
#> 10                     11        1          6                 2 rcp45              1959  724. 0.246            0.342
#> # … with more rows
#> # Source:   table<"diadesatlas"."casestudy"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   casestudy_id casestudy_name           publishable geom                                                        
#>          <int> <chr>                    <lgl>       <pq_gmtry>                                                  
#> 1            3 Normand-Breton Gulf      TRUE        0103000020E6100000010000003A010000D08FF885F7A4F0BFCA66C74A9…
#> 2            4 Loire                    TRUE        0106000020E61000000400000001030000000100000005000000E71D48D…
#> 3            6 Gipuzcoan                TRUE        0106000020E610000002000000010300000001000000FA000000F5690FD…
#> 4            1 Waterford Harbour        TRUE        0106000020E610000002000000010300000003000000840200004472DEF…
#> 5            9 Mondego                  TRUE        0106000020E6100000020000000103000000010000006502000090455BF…
#> 6            8 Minho                    TRUE        0103000020E610000001000000B7040000295C2F83AAE61BC0CC7D996F0…
#> 7            2 Tamar-Taff-Frome         TRUE        0106000020E610000003000000010300000001000000CA00000019C5EAD…
#> 8            5 Gironde-Garonne-Dordogne TRUE        0106000020E61000000200000001030000000400000065080000ABC3407…
#> 9            7 Ulla                     TRUE        0103000020E61000000100000066010000AF11015F00D71FC093CDADAA1…
#> # Source:   table<"diadesatlas"."ecosystemic_services"> [?? x 5]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    ecosystemic_services_id casestudy_id species_id subcategory_id esvalue_id
#>                      <int>        <int>      <int>          <int>      <int>
#>  1                      89            1          6              1          0
#>  2                      99            1          8              1          0
#>  3                      95            1         18              1          0
#>  4                      96            1         21              1          0
#>  5                      90            1         25              1          0
#>  6                      97            1         26              1         -1
#>  7                      93            1         20              1         -1
#>  8                      94            1          4              1          0
#>  9                      91            1         13              1         -1
#> 10                      92            1         22              1          1
#> # … with more rows
#> # Source:   table<"diadesatlas"."basin"> [?? x 12]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    basin_id basin_name   country ecoregion_code longitude latitude surface_area_drainage_basin length_main_wate…
#>       <int> <chr>        <chr>            <int>     <dbl>    <dbl>                       <dbl>             <dbl>
#>  1       15 Authie       France           20025      1.63     50.4                        1305               100
#>  2      228 Vosso        Norway           20022      5.72     60.5                          NA                NA
#>  3      229 Laerdalselva Norway           20022      7.46     61.1                          NA                NA
#>  4      230 Aroelva      Norway           20022      7.16     61.3                          NA                NA
#>  5      235 Figgjo       Norway           20022      5.83     58.8                          NA                NA
#>  6      236 Etneelv      Norway           20022      5.92     59.7                          NA                NA
#>  7      237 Opo          Norway           20022      6.54     60.1                          NA                NA
#>  8      238 Loneelv      Norway           20022      5.05     60.8                          NA                NA
#>  9      231 Eira         Norway           20022      8.14     62.7                          NA                NA
#> 10      239 Bondalselv   Norway           20022      6.38     62.3                          NA                NA
#> # … with more rows, and 4 more variables: altitude_source <dbl>, bibliography <chr>, administrator <chr>,
#> #   link_pictures <chr>
#> # Source:   table<"diadesatlas"."basin_outlet"> [?? x 9]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    basin_id  wso_id ccm_name ccm_area ccm_window geom      seaoutlet_geom   simplified_geom   verysimplified_ge…
#>       <int>   <int> <chr>       <dbl>      <int> <pq_gmtr> <pq_gmtry>       <pq_gmtry>        <pq_gmtry>        
#>  1      147   83758 Spey        3061.       2001 01060000… 0101000020E6100… 0103000020E61000… 0103000020E610000…
#>  2      155   83745 Tay         5902.       2001 01060000… 0101000020E6100… 0103000020E61000… 0103000020E610000…
#>  3      137  291745 <NA>        1014.       2003 01060000… 0101000020E6100… 0103000020E61000… 0103000020E610000…
#>  4       65 1034751 <NA>       51464.       2008 01060000… 0101000020E6100… 0106000020E61000… 0106000020E610000…
#>  5      232 1034818 <NA>        3182.       2008 01060000… 0101000020E6100… 0106000020E61000… 0106000020E610000…
#>  6      242 1034790 Vefsna      4218.       2008 01060000… 0101000020E6100… 0103000020E61000… 0103000020E610000…
#>  7      177  291146 Vilaine    10490.       2003 01060000… 0101000020E6100… 0103000020E61000… 0103000020E610000…
#>  8      233 1034734 <NA>        6163.       2008 01060000… 0101000020E6100… 0106000020E61000… 0106000020E610000…
#>  9      271   83811 Thames     13514.       2001 01060000… 0101000020E6100… 0106000020E61000… 0106000020E610000…
#> 10       62 1034724 Glomma     41911        2008 01060000… 0101000020E6100… 0106000020E61000… 0106000020E610000…
#> # … with more rows
#> # Source:   table<"diadesatlas"."casestudy_basin"> [?? x 2]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    casestudy_id basin_id
#>           <int>    <int>
#>  1            1       20
#>  2            2      330
#>  3            2      331
#>  4            2      329
#>  5            3       36
#>  6            3      137
#>  7            4       89
#>  8            5      382
#>  9            5       60
#> 10            6      362
#> # … with more rows
#> # Source:   table<"diadesatlas"."climatic_model"> [?? x 5]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    climatic_model_id climatic_model_code oceanic_model atmospheric_model           climatic_model_hm
#>                <int> <chr>               <chr>         <chr>                       <chr>            
#>  1                 1 canesm2             CanESM2       "CCCma-CanESM2"             ""               
#>  2                 2 cnrmcm5             CNRM-CM5      "CNRM-CERFACS-CNRM-CM5"     "cn"             
#>  3                 3 csiromk360          CSIRO-Mk3-6-0 "CSIRO-QCCCE-CSIRO-Mk3-6-0" "cs"             
#>  4                 4 gfdlesm2m           GFDL-ESM2M    "NOAA-GFDL-GFDL-ESM2M"      ""               
#>  5                 5 hadgem2es           HadGEM2-ES    "MOHC-HadGEM2-ES"           ""               
#>  6                 6 ipslcm5amr          IPSL-CM5A-MR  "IPSL-IPSL-CM5A-MR"         ""               
#>  7                 7 miroc5              MIROC5        "MIROC-MIROC5"              ""               
#>  8                 8 mpiesmmr            MPI-ESM_MR    "MPI-M-MPI-ESM-LR"          ""               
#>  9                 9 noresm1me           NorESM1-ME    "NCC-NorESM1-M"             "no"             
#> 10                10 access10            ACCESS1-0     ""                          ""               
#> # … with more rows
#> # Source:   table<"diadesatlas"."species"> [?? x 5]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    species_id latin_name                english_name local_name active
#>         <int> <chr>                     <chr>        <chr>      <lgl> 
#>  1          1 Acipenser gueldenstaedtii <NA>         ""         FALSE 
#>  2          2 Acipenser naccarii        <NA>         ""         FALSE 
#>  3          3 Acipenser stellatus       <NA>         ""         FALSE 
#>  4          5 Alosa algeriensis         <NA>         ""         FALSE 
#>  5          7 Alosa caspia              <NA>         ""         FALSE 
#>  6          9 Alosa immaculata          <NA>         ""         FALSE 
#>  7         10 Alosa kessleri            <NA>         ""         FALSE 
#>  8         11 Alosa tanaica             <NA>         ""         FALSE 
#>  9         12 Alosa volgensis           <NA>         ""         FALSE 
#> 10         14 Caspiomyzon wagneri       <NA>         ""         FALSE 
#> # … with more rows
#> # Source:   table<"diadesatlas"."category"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   category_id category_name          sortorder
#>         <int> <chr>                      <int>
#> 1           2 Provisionning services         1
#> 2           3 Regulating services            2
#> 3           1 Cultural services              3
#> # Source:   table<"diadesatlas"."subcategory"> [?? x 3]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   subcategory_id subcategory_name                                                                    category_id
#>            <int> <chr>                                                                                     <int>
#> 1              1 Food provision from commercial fisheries                                                      2
#> 2              2 Option value associated to the unknown production of molecules                                2
#> 3              3 Redistribution of nutrients - nutrients transportation                                        3
#> 4              4 Traditional know-how (fishing techniques used) related to the commercial fisheries            1
#> 5              5 Traditional know-how related to the recreational fisheries                                    1
#> 6              6 Gastronomy around species including emotional brotherhood (festival, event, and fo…           1
#> 7              7 Natural heritage and natural diversity - the existence value                                  1
#> 8              8 Recreation sport fishing (incl. competition)                                                  1
#> 9              9 The potential for environmental education and research                                        1
#> # Source:   table<"diadesatlas"."v_maxvalue_es"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>    category_id casestudy_id species_id esvalue_id
#>          <int>        <int>      <int>      <int>
#>  1           2            8         13          1
#>  2           3            3          8          0
#>  3           2            8         20          0
#>  4           1            8         19          0
#>  5           3            8         19          0
#>  6           3            9         21          0
#>  7           3            6          6          1
#>  8           3            4          8          0
#>  9           1            5          6          2
#> 10           3            8          8          0
#> # … with more rows
#> # Source:   table<"diadesatlas"."lang85_85"> [?? x 12]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>       id geom          fid   cat  cat_ basin_id wso_id ccm_name ccm_area ccm_window seaoutlet_   simplified     
#>    <int> <pq_gmtry>  <int> <int> <int>    <int>  <int> <chr>       <dbl>      <int> <chr>        <chr>          
#>  1     1 0103000020…     1     2     6       65 1.03e6 <NA>       51464.       2008 SRID=4326;P… SRID=4326;MULT…
#>  2     2 0103000020…     2     4    17      271 8.38e4 Thames     13514.       2001 SRID=4326;P… SRID=4326;MULT…
#>  3     3 0103000020…     3     7    22       62 1.03e6 Glomma     41911        2008 SRID=4326;P… SRID=4326;MULT…
#>  4     4 0103000020…     4    15    38       51 6   e0 Elbe      143656.       2000 SRID=4326;P… SRID=4326;MULT…
#>  5     5 0103000020…     5    16    38       51 6   e0 Elbe      143656.       2000 SRID=4326;P… SRID=4326;MULT…
#>  6     6 0103000020…     6    17    38       51 6   e0 Elbe      143656.       2000 SRID=4326;P… SRID=4326;MULT…
#>  7     7 0103000020…     7    24    47       81 1.03e6 <NA>        8356.       2008 SRID=4326;P… SRID=4326;MULT…
#>  8     8 0103000020…     8    28    71       40 8.38e4 <NA>        1928.       2001 SRID=4326;P… SRID=4326;MULT…
#>  9     9 0103000020…     9    32    78      164 8.41e4 <NA>        1327.       2001 SRID=4326;P… SRID=4326;MULT…
#> 10    10 0103000020…    10    34    83       19 8.37e4 <NA>        5811.       2001 SRID=4326;P… SRID=4326;MULT…
#> # … with more rows
#> # Source:   table<"diadesatlas"."ices_grass"> [?? x 14]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>       id geom              fid   cat   gid major_fa subarea division subdivisio unit  area_full area_27 area_km2
#>    <int> <pq_gmtry>      <int> <int> <int> <chr>    <chr>   <chr>    <chr>      <chr> <chr>     <chr>      <dbl>
#>  1     1 0103000020110F…     1     4    10 27       4       a        <NA>       <NA>  27.4.a    4.a      267336.
#>  2     2 0103000020110F…     2     4    10 27       4       a        <NA>       <NA>  27.4.a    4.a      267336.
#>  3     3 0103000020110F…     3     1     8 27       4       b        <NA>       <NA>  27.4.b    4.b      280957.
#>  4     4 0103000020110F…     4     4    10 27       4       a        <NA>       <NA>  27.4.a    4.a      267336.
#>  5     5 0103000020110F…     5     5    72 27       3       a        <NA>       <NA>  27.3.a    3.a          NA 
#>  6     6 0103000020110F…     6     7    40 27       8       a        <NA>       <NA>  27.8.a    8.a       62145.
#>  7     7 0103000020110F…     7     7    40 27       8       a        <NA>       <NA>  27.8.a    8.a       62145.
#>  8     8 0103000020110F…     8     7    40 27       8       a        <NA>       <NA>  27.8.a    8.a       62145.
#>  9     9 0103000020110F…     9    10    46 27       7       e        <NA>       <NA>  27.7.e    7.e       56370.
#> 10    10 0103000020110F…    10     8    42 27       7       b        <NA>       <NA>  27.7.b    7.b       35555.
#> # … with more rows, and 1 more variable: simplified <chr>

casestudy <- tbl(con, dbplyr::in_schema("diadesatlas", "casestudy"))
casestudy
#> # Source:   table<"diadesatlas"."casestudy"> [?? x 4]
#> # Database: postgres [ptlambert@citerne.bordeaux.irstea.priv:5432/eurodiad]
#>   casestudy_id casestudy_name           publishable geom                                                        
#>          <int> <chr>                    <lgl>       <pq_gmtry>                                                  
#> 1            3 Normand-Breton Gulf      TRUE        0103000020E6100000010000003A010000D08FF885F7A4F0BFCA66C74A9…
#> 2            4 Loire                    TRUE        0106000020E61000000400000001030000000100000005000000E71D48D…
#> 3            6 Gipuzcoan                TRUE        0106000020E610000002000000010300000001000000FA000000F5690FD…
#> 4            1 Waterford Harbour        TRUE        0106000020E610000002000000010300000003000000840200004472DEF…
#> 5            9 Mondego                  TRUE        0106000020E6100000020000000103000000010000006502000090455BF…
#> 6            8 Minho                    TRUE        0103000020E610000001000000B7040000295C2F83AAE61BC0CC7D996F0…
#> 7            2 Tamar-Taff-Frome         TRUE        0106000020E610000003000000010300000001000000CA00000019C5EAD…
#> 8            5 Gironde-Garonne-Dordogne TRUE        0106000020E61000000200000001030000000400000065080000ABC3407…
#> 9            7 Ulla                     TRUE        0103000020E61000000100000066010000AF11015F00D71FC093CDADAA1…

Create connection

my_dm <- dm_from_src(con, schema = "diadesatlas", learn_keys = TRUE)
my_dm

Function to collect data

# empty
# dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "cices51")) %>% collect()
# services ?
# dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "cices")) %>% collect()
# services new
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "es_diades")) %>% collect()
# geometry of all basin
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "basin_location")) %>% collect()
# Model results over the years
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "hybrid_model_result")) %>% collect()
# Abundance of species in a given basin ove the years
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "abundance")) %>% collect()
# ?
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "climatic_model")) %>% collect()
# List of all basins
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "basin")) %>% collect()

# List of basin for case_study
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "casestudy")) %>% collect()
# List of basins id for case_study
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "casestudy_basin")) %>% collect()
# List of ecosystem services
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "ecosystem_service")) %>% collect()
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "ecosystem_service_new")) %>% collect()
# List of species
dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "species")) %>% collect()

Prepare data for Home page

Prepare json files

Create all json data used on the home page of the app

# List of case studies
casestudy <- dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "casestudy")) %>% collect()
# List of the corresponding basins
casestudy_basin <- dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "casestudy_basin")) %>% collect()
# Put them two together
cstd <- full_join(casestudy, casestudy_basin) %>% filter(publishable)

# Get the features for drawing the polygons on the map
qry <- "SELECT ST_Transform(diadesatlas.basin_outlet.simplified_geom, 4326) as geom, basin_id as basin_id FROM diadesatlas.basin_outlet"

# i then read as an sf object
pols <- sf::st_read(con, query = qry, geom = "geom") %>%
  filter(basin_id %in% casestudy_basin$basin_id) %>%
  left_join(cstd)
pols %>%
  geojson::as.geojson() %>%
  geojson::geo_write(here::here("inst/casestudy.json"))

# List of ecosystem services
ecosystems <- dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "ecosystem_service")) %>% collect()
ecosystems %>%
  filter(presence == 1) %>%
  jsonlite::write_json(here::here("inst/ecosystems.json"))
# Services
services <- dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "v_ecosystemic_services")) %>% collect()
services %>%
  distinct(category_id, subcategory_id, category_name, subcategory_name) %>%
  mutate(
    subcategory_id = gsub("99", "0", subcategory_id)
  ) %>%
  arrange(
    category_id, subcategory_id
  ) %>%
  mutate(
    subcategory_id = gsub("0", "99", subcategory_id)
  ) %>%
  jsonlite::write_json(here::here("inst/services.json"))

eco_and_services <- full_join(ecosystems, services)

# Species

species <- dplyr::tbl(con, dbplyr::in_schema("diadesatlas", "species")) %>% collect()
species %>%
  filter(species_id %in% ecosystems$species_id) %>%
  jsonlite::write_json(here::here("inst/species.json"))

Stop connection

DBI::dbDisconnect(con)